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INTRODUCTION

Some years ago, Ron Ekers and Arnold Rots suggested a scheme for estimating
short-spacing information (Ekers and Rots 1979). The essence of the method is to scan
an interferometer in position on the sky and record the complex visibility measured as
a function of scan position. A transform with respect to the scan position then yields
estimates of all spatial frequencies spanned by the surfaces of the two interferometer
elements, weighted by a sensitivity function. An elaborated version of this approach
will be used in the millimeter array to allow imaging of large fields of view (Cornwell,
1984). This latter method is based upon the Maximum Entropy method of image
reconstruction, and is known as “mosaicing”.

For the design of the mm array, we must know the sensitivity of the mosaic-
ing method to various types of error in the measured visibility, such as receiver noise,
uncertainties in the knowledge of the illumination patterns, pointing errors of the el-
ements, incomplete sampling in both the sky and Fourier planes, cross-talk between
receivers, correlated atmospheric emission, etc. Therefore, as a first step in gaining
this necessary understanding, I have performed an error analysis of the Ekers and Rots
scheme, which is given in this memo.

THE EKERS AND ROTS SCHEME

A simple mathematical description of the Ekers and Rots scheme can be given in
terms of the pointing-position-dependent visibility function measured. For simplicity,
our analysis will apply only to the one-dimensional case. Let z, be the pointing position
of the elements of the telescope on the sky, and u be the separation of the telescopes
measured in wavelengths, as seen from the source. We describe the “primary beam”
or sensitivity to emission of an element by the function A(z — zp), which tapers off to
zero for large offsets from the pointing center. We will normalize so that A(0) = 1.
The visibility function sampled at pointing position zp 1s then basically the Fourier
transform of the true sky brightness I(z), in Jy/(unit area), weighted by the primary
beam A (see e.g. Thompson et al., 1986).

V(u,zp) = /A(:z: — z,)I(z) e¥™¥" dg (1)

For a single dish, u is zero and then:

V(0,2,) = / Ae — 2)I(2) da (1)
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The goal of wide-field imaging is to find I (z) over a region much larger than the width of
the primary beam P(z,). To understand how this is possible, suppose that we perform
a Fourier transform of equation (1) with respect to the pointing center position z,.
Let a(u) be the Fourier transform of the primary beam, A(x), and i(u) be the Fourier
transform of the true sky brightness. It is easy to show that the Fourier transform of
V(u,zp) with respect to z, yields what we will call the intermediate visibility function:

S V(u,zp) 92722 dg,
Viwd) = J A(zp) dzp
a(§)

= 20) i(u+¢) (2)

where £ is the variable conjugate to Zp. Therefore, by scanning continuously over some
region, and then Fourier inverting with respect to the scan position, one can obtain
an estimate of the true visibility function weighted by the Fourier transform of the
primary beam of the elements,

SAMPLING REQUIREMENTS

Scanning is not actually required for complete sampling of all the spatial fre-
quencies: we only need samples of V(u,z,) spaced in z, by an increment Az, equal
to 2—’\[3 where ) is the observing wavelength, and D is the diameter of the elements. To
formalize this, we can introduce a sampling function in z,-space, similar to the sam-
pling functions in u-space: let P(z,) be this sampling function, which would typically
be a collection of Dirac é-functions. The Fourier transform of the sampled visibility
function yields:

V(u,€) = p(€) * (% z'(u+5)) 3)

For complete, uniform sampling, this is equivalent to equation (4). The sampling _
requirements can be deduced from this equation: if P(z,) is represented by a collection
of 6-functions, then so is p(¢). Aliasing of power along the ¢ axis will occur if the extent
of the sensitivity function a(¢), at most twice the element diameter, is greater than the
separation of the é-functions in p(¢). Hence, to avoid aliasing, the spacing of pointings
must obey:

A
Az, < 5D (4)

If the signal-to-noise is sufficiently weak then poorer sampling may be allowed with
little consequent degradation in image quality. Note that this limit applies directly to
simple single-dish imaging where it is often violated, but usually the illumination of
the aperture is arranged to fall off severely near the edge so that the effective diameter
is somewhat smaller.

From here on, we will assume that aliasing can be neglected, and that we can
use equation(2) rather than equation(3).



DERIVATION OF THE VISIBILITY FUNCTION

Equation (2) can, of course, be inverted to obtain the unknown visibility function

. a(0)

Hu+ &) =V(u,¢) === 5

(+) = V(w6 52 (5)
One obvious conclusion can be drawn from this equation: uncertainties in a(¢) lead to
proportionate errors in the derived visibility function, i. The effects of the other types
of error are rather more subtle. We will discuss these in turn.

To simplify matters, we will assume that therg are N, pointing centers required
to span the object, so that the sampling function in z,-space is:

Ny
P(“’p) = Np—l 25(% - "’;(»i)) (6)

We can now discuss various sources of error.
Receiver noise: Let the noise for the visibility, V(u, a:;') ) corresponding to the
i’th pointing be oy (u, a:f,')). The covariance of the error in the derived visibility is then:

. % ' Ia(0)|2 L 2 )y , 27j(e—¢').2()
(62(u, £)6i* (u, ")) R = NZ a(€)a*(€)) Eav(u,xp ) e ™ » (7)
P =1

If the pointings are at regular increments, Az, in z,, and if all the noises are equal,
then this can be approximated :

2 1

a(0) :
for  l-Clepr— @

a(£)

Note that, as expected, the SNR improves as the square root of the number of pointing
centers. Also, the correlation scale in the u-plane is related directly to the size of the -
sampled region in the z,-plane.

. i~ ' 02 (u,:c )
(8i(u, £)6i* (u, £')) g ~ VNp »

Pointing errors: Suppose that the i’th pointing is made with a pointing center
which is actually :t:f,') + sz,,') . We then have that:

N, -
V(ua f) = Np—l Z V(u, xi") + 6:3}(:)) 621163:;') (9)
=1

since the reconstruction can only be made with the nominal pointing center (unless self-

calibration is used to obtain an estimate of the 6x§,') )- Using the derivative theorem,
we have that for small pointing errors, the error in the derived visibility function is:

. W,
. -72 0 ! S nj (i ] 3 ! /
bi(u+¢) = Jif: ZEE; Z((i))) ;ez 3(&+¢)zd 8200 € i(u + ¢') de (10)
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where 7 denotes the true visibility function. Hence if the expected pointing error is
zero, then so is the expected error in the derived visibility function. If the errors are
independent across pointing centers (probably not a good approximation) then the
covariance is given by:

(52.(11,5)62'*(11,6’))}3 — _(2T7r’?)_ ;(_5 a(f’llz(;)l(é'"') Z; ( u, (!)) (11)

e e 2mj(E—€'+€"—¢"") ) z(u +§u) ;*(u +£ru) de" de™

To get to grips with this equation we need to make tyo simplifying approximations:
first, that the pointing error is the same for all pointings, and second, that:

Np

> e N, §(6) (12)

i=1

Now consider a one dimensional uniformly illuminated dish of diameter D, observing
a point source of flux S. To a reasonable approximation, the variance introduced by

pointing errors is:
2 2
Oz, 2 ( A€ )
Sl = 13
w@ () = (3 (2

where Az, ... is the critical sampling rate in the z,-plane. This is gratifyingly intuitive,
given the complexity of equation (11). In particular, as seems reasonable, the error
declines as the inverse square root of the number of pointings.

7!'

o (u,€) ~

P

For an extended source, the flux S should be replaced by a weighted average of
the squared visibility over the aperture, and thus the error will decrease.

Poor knowledge of the sensitivity pattern: From equation (5), we can
show that the covariance of the errors due to uncertainties in the sensitivity pattern is

given by: (e, €)
a©)a*(€) (4

where R, is the covariance of the uncertainties in the sensitivity function, a(f).

(6i(u,£)6i" (u,€"))s = i(u + €)i*(u + £')

For simplicity, we will use a simple Gaussian model for the errors in the illumi-
nation pattern, w(¢):

Ru(A) = 0%, ¢4 (£5)’ (15)
so that the correlation scale-size is L,, wavelengths. We then have
Ra(8) = o2 e~ (£2)’ (16)

Therefore, for the simple case of a point source, the variance is:

2

a? 5?2 17
i(u,6) ~ |(£)| (17)
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DiscussionN

At this first look, it seems that both pointing errors and illumination uncer-
tainties will be important. Consider a one-dimensional image of an object requiring
40 pointings, and suppose that we use uniform illumination, and that the pointing is
good to one-tenth of the FWHM width of the primary beam. The SNR due to pointing
errors on a measurement of the visibility function of a point source is then only about
10 at baselines differing from the nominal by half a dish diameter. For the case of llu-
mination errors, use of interferometers dishs for which the surface is known to % will
have allow a SNR of about 10, again at baselines offset by half a dish diameter. Unlike
these two effects, receiver noise can be reduced to an .arbitra.rily small level simply by
integration over time.

In assessing the importance of these results, we must note that the relationship
of the Ekers and Rots scheme to the full mosaicing method is not clear. The general
qualitative nature will probably be conserved: for example, the effect of pointing errors
will decline with number of pointings. However, given the complexity of the mosaicing
method, only simulation will answer some of these questions properly. The next step
in this analysis should therefore be simulation of the mosaicing method. The order of
importance of factors in the simulation is:

¢ Pointing errors: both correlated and uncorrelated in time.
o Uncertainty and variability in the sensitivity function.
e Receiver noise.

¢ Limited sampling in the zp-plane.
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