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ABSTRACT

The offset geometry of the Open Cassegrain antenna design
proposed for the MMA will cause circulary polarized beams to be
separated by 0.14 beamwidths, compared with a separation of 0.06
beamwidths for the VIA. If uncorrected this circular polarization
beam squint will seriously limit the ability of the MMA to
measure circular polarization. Two methods are proposed to
correct this polarization degradation. Both of these solutions
require the addition of reflectors in the optical path and need
further study to be sure that there are no undesired diffraction
effects in the longest MMA wavelength bands.

1. INTRODUCTION

A Millimeter Array (MMA) antenna design using an offset
Cassegrain geometry offers a number of attractive advantages
including light weight (and therefore low cost), reduced
reflector gravitational deformations and reduced blockage (Cheng,
1994). A significant disadvantage of the design is a degradation
in the polarization performance of the antenna resulting from the
loss of symmetry in the offset geometry. In this report we
investigate this loss of polarization performance.

We will use the term "offset reflector" to mean a reflector
which is part of a symmetric conic surface of revolution
(paraboloid, ellipsoid, hyperboloid) but which, because its
center does not coincide with the axis of symmetry of the parent
surface, is itself asymmetric. The polarization problems of a
prime-focus-fed offset parabola are well known (chu- and Turrin,
1973) to include high cross polarized sidelobes for linearly
polarized feeds and non-coincident beams (beam squint) for
circularly polarized feeds.

Rudge et al (pg 188, 1982) classifies offset Cassegrain
antennas into the three types shown in Figure 1. In the double
offset system the secondary focus is located on the axis of
symmetry of the parent parabola (of which the offset primary
reflector is a piece). This geometry has similar polarization
problems to the prime-focus offset system, somewhat reduced in
magnitude because of the longer effective focal length. In the
optimized double offset geometry (Figure 1b) the axis of the
subreflector is rotated through a small angle, so that the
secondary focus is located a small distance off of the axis of
the parent parabola, and the polarization problems are cured
provided the rotation angle is correctly chosen as explained in -
Section 2 below. The geometry of the GBT is an example of an
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optimized double offset geometry (except that the GBT is
Gregorian rather than Cassegrainian) and the GBT will have good
polarization performance at its secondary focus. The geometry
proposed for the MMA by Cheng (1994) is an example of an Open
Cassegrain (Figure 1c). Here the subreflector axis is rotated by
a large angle so that the secondary focus is far away from the
parent parabola axis in the middle of the offset primary
reflector. The polarization correction of the optimized design is
no longer possible and the Open Cassegrain has poor polarization
performance (pg 234, Rudge et al 1988, Chu and Turrin, 1973). In
Section 2 we provide the formulas needed to calculate the
magnitude of this degradation and in Section 3 we apply the
formulas to the MMA and other Open Cassegrain designs. In Section
4 we consider the astronomical consequences of the degradation
and in Section 5 we discuss possible solutions if the degradation
is unacceptable.

2. POLARIZATION PROPERTIES OF OFFSET DUAL REFLECTOR ANTENNAS

Consider first a single reflector antenna (Figure 2). If a
parabola , with focal length F, is fed by a circularly polarized
feed whose phase center is located on the prime focus of the
parabola and whose axis is tilted by an angle 6, with respect to
the parabola axis, then the beam from the parabola is squinted
away from the parabola axis by an angle 6., given by (Duan and
Rahmat-Samii, 1990):

sin®
e ——+siﬁl[ "] (1)
° 2Fk
where k=2n/XA and A is the wavelength. The direction of the beam
squint is orthogonal to the plane containing the axis of the
parabola and the axis of the feed. The 7 sign means that the
right circularly polarized (RCP) beam is squinted to the left
(looking from the parabola vertex out along the parabola axis)
and the LCP beam is squinted to the right. The total separation
between the two beams is then 26, and is independent of frequency
when expressed as a fraction of the beamwidth. Note that (1)
applies to a symmetric or an offset parabola and indicates that,
provided the feed has good polarization performance such as is
provided by a corrugated horn, there will be no circularly
polarized beam squint if the feed axis is parallel to the
parabola axis.

If the feed in Figure 2 is linearly, instead of circularly,
polarized the linearly polarized beams are not squinted but a
pair of cross polarized sidelobes are present with peaks located
at about the -5dB points of the main beam. These cross polarized
sidelobes lie in the plane orthogonal to the plane containing the
parabola axis and the feed axis. We have used the approach of
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Thompson (1973), in which the linear cross polarization is
obtained from the phase shift of the circular polarization, to
estimate the size of these cross polarized sidelobes and the
results are shown in Figure 3. Note that the curves in Figure 3
are in good agreement with the results in Chu and Turrin (1973).

We will now consider dual reflector offset antennas. We will
use the approach of Rusch et al (1990) and Duan and Rahmat-Samii
(1991) in which a prime focus fed offset parabola is defined
which is equivalent in performance to the dual reflector antenna.
The equivalent parabola is equivalent in the sense that, if it is
fed from its prime focus by the same feed as is used for the dual
reflector antenna, it will have the same copolarized and
crosspolarized radiation patterns as the dual reflector antenna.
Once the equivalent parabola is found expression (1) and the
curves of Figure 3 can be used to quantify the polarization
performance of the dual reflector system. The geometry of the
dual reflector system is shown in Figure 4. The axis of the
subreflector is rotated by an angle B with respect to the
parabola axis and the axis of the feed is rotated by an angle 6;
with respect to the subreflector axis. The focal length, F., of
the equivalent parabola is given by (Rusch et al, 1990):

F e 1ol (2)
(e?+1) -2ecosp)

where e is the ellipticity of the subreflector. Note that in the
case of a symmetrical dual reflector system B=0 and (2) reduces
to the well known result that the effective focal length is the
product of the primary focal length and the magnification, where
the magnification is (e+l)/(e-1). The angle, «, between the
subreflector axis and the axis of the equivalent paraboloid is
given by:

tan (%) =22 ean Py (3)
2 e-1 2

Note that there is a quadrant ambiguity for o in (3). This
ambiguity can be resolved using the fact (Dragone, 1978) that the
axis of the equivalent parabola passes through the secondary
focus and the point of intersection of the real parabola axis
with the subreflector surface. Note that to find this point of
intersection it may be necessary to draw the entire ellipse in
the case of a Gregorian secondary or to draw the second branch of
the hyperbola in the case of a Cassegrain secondary. The angle
that the feed axis is rotated with respect to the equivalent
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parabola axis is 6;-a so we can use (1) to determine the beam
squint, 6., of the dual reflector as :

. sin(GB~a)
6 =sin’| ———— (4)
2F k

eq

Equation (4) indicates that if it can be arranged that ©;-a = 0,
that is the feed is pointed along the axis of the equivalent
parabola, there is no beam squint. This is the case for the
optimized double offset geometry mentioned in Section 1. (2) and
(4) show that as the subreflector axis offset angle, B, increases
F., decreases and the beam squint increases. With the Open
Cassegrain geometry B is so large that it is not possible to have
the feed both aligned with the equivalent parabola axis and
pointed at the center of the subreflector at the same time so the
beam squint cannot be avoided.

3. POLARIZATION PROPERTIES OF OPEN CASSEGRAIN ANTENNAS

Before applying the formulas in Section 2 to the MMA design
we will check them using two Open Cassegrain antennas whose
polarization properties are known.

The VLA antenna can be thought of as a special case of an
Open Cassegrain geometry in which the subreflector axis is
rotated to locate the secondary focus off the axis of the primary
but the primary reflector happens to be symmetric. The shaped
reflectors of the VLA were derived as small perturbations on the
parent classical Cassegrain geometry shown in Figure 5. Since
polarization degradation of the type considered in this report is
almost independent of aperture illumination taper it is expected
that the beam squint of the classical Cassegrain and the shaped
Cassegrain will be almost the same. The parameters for the VLA
geometry are F = 9.0 m, e = 1.26, B = 7.55°, 6, = 1°. Expressions
(2) and (3) then give F,= 59.1 m and o = 59.8°. For A = 6cm (4)
then gives 6, = 14.3 arcsec which corresponds to .029 A/D, where
D is the diameter of the primary aperture, or .027 Opuy, Where
Oma 1S the half power beamwidth. This is in good agreement with
measurements of the VLA antennas which show that the total beam
separation is about .06 beamwidths (Vourlidas and Bastian, 1993 -
note that in this reference there is occasionally confusion
between the squint of the individual LCP and RCP beams and the
total offset between the two beams).

An Open Cassegrain antenna which is very similar to the
proposed MMA design, and in fact is also a slant axis design, is
described by Cook et al (1965). The geometry of this antenna,
scaled to the MMA aperture diameter of 8 m, is shown in Figure 6
and has the following parameters. F = 6.06 m, e = 1.63, B =
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47.5°, ©, = 0. Expressions (2) and (3) then give F. = 6.9 m and o
= 122.9°. For A = 1 cm (4) then gives 6, = 20.9 arcsec which
corresponds to .081 A/D. The curves of Figure 3 then predict
linearly polarized sidelobes of -22.5 dB which agrees well with
the -23 dB value computed by Cook et al (1965).

The geometry proposed by Cheng (1994) for the MMA is shown
in Figure 7 and has the following parameters. F = 5.0 m, e =
1.14, B = 45.0°, 63 = 0. Expressions (2) and (3) then give F.=
2.18 m and o = 17.5° For A = 1 cm (4) then gives 9, = 22.6
arcsec which corresponds to .088 A/D. For a -10 dB aperture
illumination edge taper the half power beamwidth, ©mu= 1.24 A/D
so the total offset between the two circularly polarized beams
expressed as a fraction of a beamwidth is 20./0Onyy = .14
beamwidths. The curves of Figure 3 then predict linearly
polarized sidelobes of -22.0 dB with respect to the peak of the
copolarized beam or -15.5 dB with respect to the gain of the main
beam at the same angle as the peak of the cross polarization. One
additional problem with this geometry should be noted. The
subreflector does not subtend equal angles around the feed axis
which would result in asymmetric illumination in the aperture.
This problem can be cured with a small change in B.

4, ASTRONOMICAL CONSEQUENCES OF THE DEGRADED POLARIZATION

In this section we consider the impact on MMA astronomy of
the polarization degradation estimated at the end of Section 3.
Since the circularly polarized beams are separated on the sky the
gain on the boresite axis of the antenna, that is the direction
in which the two beams have equal gain, will be reduced. This
gain loss will reduce sensitivity when observing small sources
close to the antenna axis. The separated beams are shown in
Figure 8 and Figure 9 shows the on-axis gain loss as a function
of the amount of beam squint. The on axis gain loss for 6, = .088
A/D is only a little more than 1% so this is not a major effect.
Note that with linearly polarized feeds the on-axis gain loss
will be the same. Gain that is lost due to beam squint with
circularly polarized feeds is lost due to reduced polarization
efficiency with linearly polarized feeds. The co-polarized and
cross-polarized patterns for the case of linear feeds are shown
in Figure 10.

The major effect of the polarization degradation would be
its effect on the ability of the MMA to measure polarization.
Thompson (1976) provides a clear discussion of the issues for
both circularly and linearly polarized feeds. Summarizing
Thompson's conclusions for the VLA, linear polarization
measurements should not be effected but circular polarization
measurements are seriously compromised. In general these
conclusions have been confirmed by experience at the VLA.
Comparing the MMA circularly polarized beam separation of .14
beamwidths with the VLA separation of .06 beamwidths indicates
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that the problem will be worse for the MMA than for the VLA.
Figure 8 shows the instrumental circular polarization in the
plane of the beamsquint and indicates values of about 25% and 40%
respectively at the halfpower and tenthpower points in the
primary beam. Holdaway et al (1992) and Vourlidas and Bastian
(1993) discuss algorithms for removing the effect of the
instrumental circular polarization.

The effect of these polarization problems on the ability of
the MMA to do high dynamic range total intensity measurements
needs to be investigated further. Thompson showed that the loss
of circular symmetry of the primary beam should be acceptable for
the VLA. It is not clear, however, that the approximations made
by Thompson are reasonable with the larger beam squint of the
MMA, especially when it is remembered that the MMA will
frequently image the full primary beam or even, using mosaicing,
multiple primary beams.

One final point should be kept in mind if an offset primary
reflector is selected for the MMA. Even if the polarization
problems at the secondary focus are solved using one of the
methods discussed in Section 5, the poor performance at the
primary focus will remain. This poor performance would include a
6 dB amplitude asymmetry across the aperture and a .18 beamwidth
circularly polarized beam separation. There does not seem to be
any strong reason why the prime focus should be needed in the
future, but this would represent reduced flexibility to respond
to currently unforeseen developments.

S. POSSIBLE SOLUTIONS TO THE POLARIZATION PROBLEMS

In this section we examine several possible ways of curing
the secondary focus polarization problems.

5.1 Optimized Double Offset Geometry With Beam Waveguide Feed.

The basic problem with the MMA geometry is the large value of
needed to bring the optical path into the middle of the offset
primary reflector where it is structurally desirable to locate
the receiver cabin. A way of keeping B small and using the
polarization correction properties of the optimized double offset
geometry mentioned in Sections 1 and 2 is shown in Figure 11. In
this geometry the secondary focus is located at F, with e = 1.11,
B = .16° and 6; = 3.0°. Then (3) gives a = 3.0° and (4) gives O, =
0. The secondary focus is transferred from F, to the desired
position at F, using the two flat mirrors M1 and M2. There are
several minor disadvantages with this geometry. There will
probably be a few % loss of sensitivity associated with M1l and M2
especially in the longer wavelength bands. For a given focal
ratio at the feed the subreflector has to be larger, making
subreflector nutation more difficult. Keeping the optical path
between the subreflector and M1 clear will complicate the design
of the subreflector support arm. The blockage due to M2 is larger
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than the hole needed to allow the beam to pass through the
reflector surface. The beam could be brought to F2 underneath the
reflector but this would complicate the task of keeping the beam
free of obstructions. Finally, the finite size of M1 and M2 will
probably limit the size of focal plane arrays for the longer
wavelength bands. If further study does not identify more serious
problems, this geometry does seem viable.

5.2 Polarization Correcting Tertiary reflector

The use of a tertiary reflector to correct the polarization
of an Open Cassegrain was suggested by Chu and Turrin (1973) and
the detailed theory of the technique is given by Dragone (1978).
We will define the central ray in a dual reflector system as that
ray from the secondary focus which, after reflection by the
secondary and primary reflectors, passes through the center of
the primary aperture. Suppose we use a tertiary reflector such as
an ellipsoid to form a tertiary focus, as shown in Figure 12.
Using symmetry arguments Dragone shows that this tertiary
ellipsoid will correct the polarization if the parameters of the
ellipsoid are chosen so that a ray travelling along the axis of
the equivalent parabola through the secondary focus, after two
reflections by the tertiary reflector, becomes the central ray.
To achieve this the parameters of the tertiary must satisfy:

tan(ij=—££taﬁy) (5)
M-1

where the angles i and y are defined in Figure 12 and M = -
|F,I|/|F,I|]. There are many locations of F, with respect to F, and
many ellipses which will satisfy (5). For convenience we will use
the symmetric arrangement shown in Figure 13 in which the
tertiary focus is arbitrarily placed on the line which bisects
the angle between the axis of the equivalent parabola and the
central ray. In this case it can be shown that the tertiary
ellipsoid satisfying (5) has an eccentricity, e., given by:

1-]1-2 (cos")?|
2 (6)

e,=
siny

We can now design a polarization correcting tertiary for the
proposed MMA geometry shown in Figure 7. Note that 2y = m-a. For
the MMA geometry o = 17.5°. Then from (6) e, = 0.858. Selecting
the distance between the secondary and tertiary focus arbitrarily
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to be 1m then gives the tertiary shown in Figure 14. There are a
number of complications with the use of a tertiary in this way.
The orientation of the feed shown in Figure 14 does not provide a
suitable location for the receiver so it will be necessary to
interpose a flat plate between the tertiary focus and the
ellipsoid to direct the beam down into the receiver cabin. To
make room for the tertiary and the flat plate above the receiver
cabin it will be necessary to move the secondary focus up closer
to the reflector surface and to use a slightly larger value for
B. In the design shown in Figure 14 the top and bottom edges of
the subreflector do not subtend equal angles at the feed. The
parameters of the ellipscid can be changed to cure this. With the
tertiary so close to the feed it is likely at the longer
wavelength bands that there will be undesirable diffraction
effects and that the size of focal plane arrays will be limited.
None of these complications seem so fundamental as to prevent the
use of a polarization correcting tertiary.

5.3 Use of Shaped Reflectors

A shaped Open Gregorian geometry can be synthesized which
has a symmetric aperture distribution (Galindo-Israel, 1991), so
it is likely that a shaped design without polarization
degradation is possible. This possibility has not been
investigated at all because shaped reflector systems usually have
severely limited fields-of-view and because a shaped offset
primary probably would not be a surface of revolution,
significantly increasing reflector panel cost. The shaped
reflector approach should be investigated more to verify that
these limitations are real.

5.4 Use of an Open Gregorian or Lower Magnification Geometry

With a Gregorian geometry the subreflector lies on the
opposite side of the parent parabola axis, allowing the inside
edge of the primary to be located right up against this axis
without blockage. This leads to a slightly smaller value for (,
thereby reducing the polarization degradation at both the primary
and secondary foci slightly. The merits of a Gregorian geometry
should therefore be investigated, but it is clear that the use of
a Gregorian geometry alone cannot completely solve the problem.
Evaluation of expressions (2), (3) and (4) as a function of
eccentricity, for a given value of B, shows that the beam squint
is essentially constant for all reasonable values of eccentricity
for both Cassegrain (e>1) and Gregorian (e<l) geometries.
Therefore the polarization degradation cannot be reduced by
simply changing the focal ratio of the optics.

6. CONCLUSIONS
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A MMA antenna using the Open Cassegrain geometry proposed by
Cheng (1994) will have a separation between circularly polarized
beams of 0.14 beamwidths (compared with .06 beamwidths on the
VILA) or -22 dB cross polarized sidelobes in linear polarization.
This will seriously limit the ability of the MMA to measure
circular polarization. This degradation in polarization
performance can be cured at the expense of a more complicated
optics system using either of two approaches. An optimized double
offset geometry can be used, with the secondary focus being
transferred to the center of the primary using a pair of flat
plate reflectors. Alternatively, a polarization correcting
tertiary reflector can be used close to the secondary focus of
the Open Cassegrain geometry. It must be noted that the analysis
and synthesis of reflector geometries reported here is based
purely on geometrical optics. Before any geometry is finally
chosen for the MMA it is essential that a full diffraction
analysis be performed to check that there are no unacceptable
losses or limitations in the field-of-view for the longer
wavelength bands.
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Figure 11. Optimised double offset geometry with flat plate beam
waveguide feed.
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Figure 12. Tertiary reflector for polarization correction.
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