next up previous
Next: The Dual-Polarization Advantage Up: MMA Memo 170 System Previous: Single Sideband and Double

Receiver Performance Goals

As receiver temperatures get better, we may reach a point in which atmospheric and spillover noise dominate system noise such that further reductions in receiver noise result in insignificant improvements in sensitivity. In terms of the equations presented above, we can prescribe a practical performance goal, at least parametrically. The DSB noise temperature of the ultimate receiver when using the Planck equation to express physical temperatures as equivalent radiation temperatures is given by Kerr, Feldman, and Pan in MMA Memo 161 as


 equation194

The question is how close do we need to get to this limit before further improvements are insignificant in terms of integration time. To parameterize the problem, let us define an ``acceptable'' integration time (tex2html_wrap_inline726) representing the time necessary to achieve an arbitrary sensitivity and define an ``ultimate'' integration time required for a quantum-limited receiver (tex2html_wrap_inline728), but in the presence of atmospheric and spillover noise. Let ``n'' be the performance degradation we consider acceptable. An appropriate value for this factor might be 2.

From the system temperature equation (Equation 1) and the radiometer equation (Equation 13),


 eqnarray202

where we are assuming that the observation is made in SSB mode but that tex2html_wrap_inline632 is a DSB receiver noise temperature. Solving for tex2html_wrap_inline732, we find


 equation213


Jeff Mangum