Mixer-Preamp Design Using MMICAD

A. R. Kerr and S.-K. Pan
6 February 1999

Abstract

The microwave circuit simulator MMICAD can be used to analyze and optimize the small-signal conversion and noise performance of a mixer-preamplifier. The mixer is represented as a noisy five-frequency five-port network using imported conversion and noise correlation matrices, with MMICAD's NCSCOR 5 element which contains five correlated noise sources.

Introduction

The conversion gain, RF input impedance, noise figure, and IF bandwidth of a heterodyne receiver are all strongly dependent on the IF amplifier and the coupling circuit between the mixer and the amplifier. In classical mixer receivers (e.g., those using semiconductor diode mixers), it is common to design a coupling network to give a conjugate match between mixer and amplifier. In receivers using SIS mixers, attempting to match the IF port of the mixer is likely to result in negative RF input resistance and reduced dynamic range, which are undesirable in most applications. Low noise operation with a modest conversion loss and low RF input SWR is achieved when the SIS mixer sees a relatively low IF load impedance, i.e., not with a matched IF load, in which case the electrical distance between the mixer and IF amplifier can strongly affect the overall noise performance. An IF isolator or balanced amplifier [1] can minimize variation of the noise figure across the IF band, but then thermal noise added by the termination of the isolator (or by the termination of the input quadrature hybrid of the balanced amplifier) can add substantially to the overall noise temperature, and the IF bandwidth is limited to that of the isolator or hybrid. These limitations are overcome by mounting the IF amplifier electrically close to the mixer, as described by Padin et al. [2], with an appropriately designed coupling network between the mixer and amplifier. In all cases, the design of a mixer-preamp is greatly facilitated by a microwave circuit simulator which can handle multi-frequency multi-port networks containing correlated noise sources. This report describes the use of MMICAD [3] for this purpose.

Mixer characterization in MMICAD

To optimize the performance of a complete receiver, including the overall gain, noise figure, and RF input SWR, the mixer itself is characterized as a noisy N -port network whose ports correspond to the sideband frequencies $\left|\mathrm{nf}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}\right|$, where $-(\mathrm{N}-1) / 2 \leq \mathrm{n} \leq(\mathrm{N}-1) / 2$ with N an odd integer. The admittance matrix Y of this network characterizes the small-signal properties of the mixer, and the mixer noise is described by the noise current correlation matrix \mathbf{H} whose elements give the magnitude and correlation of equivalent noise current sources at the N ports. The elements of the $\mathrm{N} \times \mathrm{N}$ matrices \mathbf{Y} and \mathbf{H} are generated by a separate mixer analysis program and written to files from which they are imported into MMICAD. While much mixer design has been based on a threefrequency analysis $(\mathrm{N}=3)$, a five-frequency analysis gives substantially more accurate results in many cases [4]. Padin et al. used MMICAD for a 3-frequency mixer analysis by representing the noisy 3-port mixer as an interconnection of three noisy two-ports, but recent versions of MMICAD have included noisy N-port networks up to $\mathrm{N}=5$, which are well suited to mixer simulation.

The matrices \mathbf{Y} and \mathbf{H} depend on the large-signal LO voltage and current waveforms at the nonlinear mixer element, which in turn depend on its I-V and C-V characteristics. When the LO voltage across the nonlinear element can be assumed sinusoidal, analytical solutions exist for the $\mathrm{Y}_{\mathrm{i}, \mathrm{j}}$ in the case of an exponential diode (e.g., ideal Schottky diode) or an ideal SIS junction. However the assumption of a sinusoidal LO voltage implies that all harmonics are short circuited, which is not always a good approximation. The more general situation requires an iterative solution
by computer as described for Schottky-diode mixers in [5], and for SIS mixers in [6]. For SIS mixers, the assumption of a sinusoidal LO voltage in combination with a 5-frequency small-signal analysis has been found to give acceptable accuracy in many cases [4].

Knowledge of the large-signal voltage and current at the nonlinear element allows the elements of \mathbf{Y} and \mathbf{H} to be computed [5, 7, 8]. Both matrices are written in Touchstone format as admittance matrices, which are easily read into MMICAD. Once in MMICAD, the elements of \mathbf{H} are converted to complex variables in the PROC block, ready for use as arguments of a noisy N-port network, NCSCOR5 or NCSCOR3, in the CKT block. It is important to note that MMICAD treats the Y-matrix as representing a physical network and assigns thermal noise to it according to the Twiss theorem [9] when it is used in a CKT block. It is therefore important to set the quantity T to zero in the Touchstone file containing the Y-matrix.

The MMICAD frequency variable FREQ is used to represent the intermediate frequency $f_{\text {IF }}$. An important characteristic of MMICAD is exploited to ensure that the Y- and H-coefficients do not change as MMICAD sweeps the IF frequency; namely, that if a network file contains only data for a single frequency, the same values are used at all frequencies. Hence \mathbf{Y} and \mathbf{H} remain the same as FREQ $\left(f_{\text {IF }}\right)$ sweeps, as is appropriate in a swept IF measurement of a mixer with a fixed $L O$ when $f_{\text {IF }} \ll f_{\text {LO }}$. RF embedding impedances at $f_{\text {LO }} \pm f_{\text {IF }}$ and $2 f_{\text {LO }} \pm f_{\text {IF }}$ can be computed in the VAR block as a function of $f_{\text {IF }}$.

The example in the following section demonstrates the use of MMICAD for analysis of a simple SIS mixer-preamp.

Example - An SIS mixer with IF amplifier and isolator

The SIS mixer-preamplifier circuit shown in Fig. 1 is analyzed using the .ckt file in the Appendix. For clarity, a simple circuit is used in this example, but the file is easily modified to include a more complex coupling circuit between mixer and amplifier and unequal or frequency dependent source impedances at the upper and lower sideband frequencies. Also, the isolator can be omitted, and the IF amplifier characterized by its own noisy circuit model in the CKT block. The small-signal conversion admittance matrix \mathbf{Y} and the noise current correlation matrix \mathbf{H} were computed in a separate program and written to the Touchstone files shown in Tables I \& II. In these files, lines beginning with ! are comments and the line beginning with \# specifies the frequency units, type of matrix (Y, Z, S), the format (real \& imaginary or magnitude \& angle), a scaling factor, and the physical temperature to be associated with the network for noise calculations (set to zero in \mathbf{Y} and irrelevant in \mathbf{H}).

Fig. 1 Block diagram of the SIS mixer-preamplifier used in the example.

The results for this simple example are shown in Fig. 2. Fig. 3 shows the results for the same mixer-preamplifier, but with the physical temperature of the isolator reduced from 4 K to 0 K . This demonstrates the contribution to the receiver noise temperature of thermal noise from the internal termination in the isolator, which is partially reflected from the mixer's IF port back into the amplifier.

Fig. 2 Results for the mixer-preamplifier of Fig. 1.

Fig. 3 Results for the same mixer-preamplifier, but with the physical temperature of the isolator reduced from 4 K to 0 K .

Table I - Conversion Admittance Matrix in Touchstone format

$!\mathrm{NA}=0$	$x=0$	$=1 \quad \mathrm{VB}$	0.0139451	FS =	. $\mathrm{E}+11$	$J=6 \quad \mathrm{GN}$	$=1.567568$	E-02 TB	4.2
\# GHZ Y	RI R 1	$\mathrm{T}=0$							
$2.30 \mathrm{E}+11$									
$1.69 \mathrm{E}-02$	$2.97 \mathrm{E}-03$	-2.70E-03	7.52E-03	-9.82E-04	-3.21E-03	$2.05 \mathrm{E}-03$	-9.61E-04	-2.89E-05	$2.86 \mathrm{E}-05$
$7.71 \mathrm{E}-03$	$3.76 \mathrm{E}-03$	$2.04 \mathrm{E}-02$	$2.06 \mathrm{E}-03$	$4.49 \mathrm{E}-03$	$1.29 \mathrm{E}-02$	-2.29E-03	-2.83E-04	-7.39E-04	-4.81E-04
-2.29E-03	0	$1.81 \mathrm{E}-02$	0	$5.31 \mathrm{E}-03$	0	$1.81 \mathrm{E}-02$	0	-2.29E-03	0
-7.39E-04	$4.81 \mathrm{E}-04$	-2.29E-03	2.83E-04	$4.49 \mathrm{E}-03$	-1.29E-02	$2.04 \mathrm{E}-02$	-2.06E-03	$7.71 \mathrm{E}-03$	-3.76E-03
-2.89E-05	-2.86E-05	$2.05 \mathrm{E}-03$	9.61E-04	-9.82E-04	$3.21 \mathrm{E}-03$	-2.70E-03	-7.52E-03	$1.69 \mathrm{E}-02$	-2.97E-03

Table II - Noise Current Correlation Matrix in Touchstone format

Description of the .CKT file

Line 3 Mode sets Noise on.
Lines 4-6 Units defined.

FILES block - Here \mathbf{Y} and \mathbf{H} are imported as 5-port networks MXR and HMAT.
Lines 8-14 The contents of these files are given in Tables I and II. Note the statement $T=0$ in the \# line of Table I, which zeros the thermal noise MMICAD associates with the Y-matrix. The elements of H have the unit $\mathrm{A}^{2} / \mathrm{Hz}$.

VAR block - Contains the values of all the circuit parameters.
Lines 16-21 The values of the parameters R_{N}, and $\omega R C$ of the series array of four SIS junctions are defined. F_{0} is the LO frequency, and $R_{\text {OPT,A }}$ is the optimum source resistance. The capacitance $C_{J, A}$ of the array is calculated.
Lines 22-28 The embedding admittance seen by the array of junctions is defined at the five sideband frequencies $\left|\mathrm{nf}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}\right|$. Suffixes denote the sidebands as follows:

1 - second harmonic lower sideband ($2 \mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\mathrm{IF}}$),
2 - lower sideband ($\mathrm{f}_{\mathrm{LO}}-\mathrm{f}_{\text {IF }}$),
3 - IF (fif),
4 - upper sideband ($\mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}$),
5 - second harmonic upper sideband ($2 \mathrm{f}_{\mathrm{LO}}+\mathrm{f}_{\mathrm{IF}}$).
For the present example, the second-harmonic sidebands ($n= \pm 2$) are assumed terminated in just the junction capacitance. The upper- and lower-sideband source impedances are 50 ohms , and it is assumed that the junction capacitance is tuned out at these frequencies. The IF load is not defined here as it depends on the other IF circuit elements and is determined in the CKT block. (Note that the embedding admittances here are given as parallel resistance and reactance components - a convention used by some SIS mixer designers.)
Lines 29-35 Equivalent circuit parameters of the RF choke.
CKT block (first of two) -
Lines 38-50 The embedding admittances from the VAR block are used to form 1-port embedding networks EMB1, EMB2, EMB4, and EMB5 according to the above suffix convention.

PROC block
Lines 52-77 The elements of the imported noise current correlation matrix $\left(\mathrm{A}^{2} / \mathrm{Hz}\right)$ are assigned to the MMICAD complex variables $\mathrm{H}_{\mathrm{i}, \mathrm{j}} \mathrm{i}, \mathrm{j}=1 . .5$.
Lines 78-93 The units of the elements $\mathrm{H}_{\mathrm{i}, \mathrm{j}}$ are converted to $\mathrm{pA}^{2} / \mathrm{Hz}$ consistent with the MMICAD NCSCORn element.

CKT block (second) -
Lines 95-105 The noiseless intrinsic 5-port mixer, MXR, is connected in parallel with its equivalent noise current sources using the NCSCOR5 element, resulting in the noisy intrinsic mixer MXRN.
Lines 106-114 The IF circuit, the 2-port IFCCT, is constructed.
Lines 115-123 The 5-port augmented network AUGMXR is formed from MXRN, the embedding impedances EMBn, and the IF circuit.
Lines 124-130 To determine the mixer's upper-sideband conversion characteristics, the noisy intrinsic mixer MXRN is terminated in the appropriate embedding impedances EMBn at all but the USB and IF, resulting in the (noisy) 2-port USBMXR.
Lines 131-137 To determine the mixer's lower-sideband conversion characteristics, the noisy intrinsic mixer MXRN is terminated in the appropriate embedding impedances EMBn at all but the LSB and IF, resulting in the (noisy) 2-port LSBMXR.
Lines 138-141 The IF isolator, including thermal noise from its internal termination at 4 K , is defined as the 2-port ISN.
Lines 142-146 The noisy IF amplifier, with 20 dB gain and noise temperature 10 K (noise figure $=0.147 \mathrm{~dB}$), is defined as 2-port AMP.
Lines 147-153 To determine the upper-sideband conversion characteristics of the complete receiver, the 2-port USBMXR is combined with the IF circuit IFCCT, isolator ISN, and amplifier AMP, giving 2-port RXUSB.
Lines 154-160 To determine the lower-sideband conversion characteristics of the complete receiver, the 2-port LSBMXR is combined with the if circuit IFCCT, isolator ISN, and amplifier AMP, giving 2-port RXLSB.

Lines 161-164 To determine the input impedance of the whole receiver, seen at the upper-sideband frequency, the USB receiver RXUSB has its IF port terminated in 50 ohms, giving the 1-port ZINUSB.
Lines 165-168 To determine the input impedance of the whole receiver, seen at the lower-sideband frequency, the LSB receiver RXLSB has its IF port terminated in 50 ohms, giving the 1-port ZINLSB.
Lines 169-173 To determine the IF output impedance of the mixer seen at the end of the RF choke, USBMXR has its RF port terminated in EMB4, and IFCCT connected to its IF port, giving 1-port ZMOUT. (LSBMXR could equally have been used, terminated in EMB2, with the same result.)

TERM block - Sets the impedance level Z0 to 50 ohms.
FREQ block - Sets the IF frequency range and step size.
MARKER block - Sets the frequency markers for the graphical displays.
OUT block - Defines the output frames and what they display.
GRID - Sets the scales for the graphical displays.
LABEL - Sets the label to appear on all graphical and tabular displays.

References

[1] A. R. Kerr, "On the Noise Properties of Balanced Amplifiers," IEEE Microwave and Guided Wave Letters, vol. 8, no. 11, pp. 390-392, Nov. 1998.
[2] S. Padin, D. P. Woody, J. A. Stern, H. G. LeDuc, R. Blundell, C.-Y. E. Tong, and M. W. Pospieszalski, "An Integrated SIS Mixer and HEMT IF Amplifier" IEEE Trans. Microwave Theory Tech., vol. MTT-44, no. 6, pp. 987-990, June 1996.
[3] MMICAD is a microwave circuit simulator from Optotek, Inc., Kanata, Ontario, Canada.
[4] A. R. Kerr, S.-K. Pan, and S. Withington, "Embedding Impedance Approximations in the Analysis of SIS Mixers," IEEE Trans. Microwave Theory Tech., vol. 41, no. 4, pp. 590-594, April 1993.
[5] P. H. Siegel and A. R. Kerr, "Computer Analysis of Microwave and Millimeter-Wave Mixers," IEEE Trans. Microwave Theory Tech., vol. MTT-28, no. 3, pp. 275-276, March 1980. For more detail, see: P. H. Siegel, A. R. Kerr, and W. Hwang, "Topics in the Optimization of Millimeter-Wave Mixers," NASA Technical Paper 2287, March 1984.
[6] S. Withington and P. Kennedy, "Numerical procedure for simulating the large-signal quantum behavior of superconducting tunnel-junction circuits," Proc. IEE, part G, vol. 138, no. 1, pp. 70-76, Feb. 1991.
[7] A. Uhlir, "Shot noise in p-n junction frequency converters," Bell System Tech. J., v. 37, no. 4, pp.951-988, July 1958.
[8] J.R. Tucker and M.J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys., vol. 57, no. 4, pp. 1055-1113, Oct. 1985.
[9] R. Q. Twiss, "Nyquist's and Thevenin's theorems generalized for nonreciprocal linear networks," J. Appl. Phys., v. 26, no. 5, pp. 599-602, May 1955.

Appendix .CKT file used in the example

```
1 ! SMIX07a.CKT Monday, Jan 18, 1999 at 6:31:06 PM
! SIS mixer with ideal IF amplifier (TN = 10 K) and isolator at 4 K.
MODE FREQ NOISE
GLOBAL
    DIM FREQ=1e+009 RES=1 COND=1 CAP=1e-015 IND=1e-012 LNG=1e-006 TIME=1e-012
    MSUB ER=12.2 H=100 T=1 RH0=1.2 TAND=0.001 @SUB1
FILES
    ! Mixer small signal conversion matrix file,
    ! generated by QuickBasic quantum mixer analysis program.
    !** Remember to set T=0 in this file **!!
    C:\MMICADV2\MISC\SMIX\OPTOTEK\UV230A5.Y MXR 5P FREQ 101
    ! Mixer noise current correlation matrix file,
    ! generated by QuickBasic quantum mixer analysis program.
    VAR
    ! Array of 4 SIS tunnel junctions (the nonlinear mixer element)
    RN=63.8 ! Normal resistance of the array
    WRC=4 ! Omega*Ropt*Cj
    F0=250 ! L0 frequency (GHz)
    ROPTA=50 ! Opt source resistance
    CJA={(WRC/(2*PI*F0*1E9*R0PTA ))*1E15} ! Capacitance of array
    ! Sideband terminations (defined for positive frequencies)
    X1={-RN/(2*WRC)} ! (2*fL0 - fIF) termination
    R2=50
    ! LSB (fLO - fIF) termination (parallel components)
    X2=1e+009 ! LSB (fLO - fIF) termination (parallel components)
    R4=50 ! USB (fLO + fIF) termination (parallel components)
    X4=1e+009 ! USB (fLO + fIF) termination (parallel components)
    X5={-RN/(2*WRC)} ! (2*fLO + fIF) termination
    ! RFC (RF Choke)
    CEQRFC1=77
        CEQRFC2=85
        CEQCA=81
    ZCPWRFC=112
    KCPWRFC=2.59
    LCPWRFC=194
    CKT
    ! Embedding Network
    NTEMP T=0
    ADM 1 0 G=0 B={1/X1} ! LSB2 (negative freq)
    DEF1P 1 EMB1
    NTEMP T=0
    ADM 1 0 G={1/R2} B={1/X2} ! LSB (negative freq)
    DEF1P 1 EMB2
    DEF1P 1 EMB
    ADM 1 0 G={1/R4} B={-1/X4} ! USB
    DEF1P 1 EMB4
    NTEMP T=0
    ADM 1 0 G=0 B={-1/X5} ! USB2
    DEF1P 1 EMB5
    PROC
    ! Noise currents (A^2/Hz) -- symmetrical
    H11=HMAT Y11
    H12=HMAT Y12
    H13=HMAT Y13
    H14=HMAT Y14
    H15=HMAT Y15
    H15=HMAT Y15
    H21=HMAT Y21
    H22=HMAT Y22
    H23=HMAT Y23
    H24=HMAT Y24
    H25=HMAT Y25
    H31=HMAT Y31
    H32=HMAT Y32
    H33=HMAT Y33
    H34=HMAT Y34
    H35=HMAT Y35
    H41=HMAT Y41
    H41=HMAT Y41
    H42=HMAT Y42
    \begin{array} { l } { \text { H43=HMAT Y43} } \\ { \text { H44=HMAT Y44} } \end{array}
    H44=HMAT Y44
    H45=HMAT Y4
    H51=HMAT Y51
    H52=HMAT Y52
    H53=HMAT Y53
    H54=HMAT Y54
    H55=HMAT Y55
    ! Noise currents (pA^2/Hz) -- all real
    IR11=RE (H11)*1E24
    IR22=RE (H22)*1E24
```

```
IR33=RE (H33) *1E24
IR44=RE (H44)*1E24
IR5 5=RE (H55)*1E24
IR12=RE (H12)*1E24
IR13=RE (H13)*1E24
IR14=RE (H14)*1E24
IR15=RE (H15)*1E24
IR23=RE (H23)*1E24
IR23=RE (H23)*1E24
IR24=RE (H24)*1E24
R2 5=RE (H25)*1E24
R34=RE (H34)*1E24
R35=RE (H35)*1E24
IR45=RE(H45)*1E24
CKT
! Intrinsic mixer with noise (5-port)
NTEMP T=0
MXR 1 2 2 3 4 4 5 0 M=
NCSCOR5 1 0 2 0 3 0 4 0 5 0 Il=IR11 R1=1e+010 &
    I2=IR22 R2=1e+010 I3=IR33 R3=1e+010 I4=IR44 &
    R4=1 + +010 I5=IR55 R5=1 e+010 CR12=IR12 CI12=0 &
    RR13=TR13 CI13=0 CR14=IR14 CI14=0 CR15=TR15 &
    CI15=0 CR23=IR23 CI23=0 CR24=IR24 CI24=0 & 
    CI15=0 CR23=IR23 CI23=0 CR24=IR24 CI24=0 & & CR24=IR34 CI34=0 CR35=IR35
    CR25=IR25 CI25=0 CR34=IR
    CI35=0 CR45=IR45 CI4
. IF Circuit (including junction capacitance CJ and RF Choke)
NTEMP T=4
CAP 1 0 C=CJA ! SIS array
CAP 1 0 C=CEQCA
TLINP 1 2 0 Z=ZCPWRFC L=LCPWRFC K=KCPWRFC A=0 F=0 SIGMA=0
CAP 2 0 C=CEQRFC2
TLINP 2 30 Z=ZCPWRFC L=LCPWRFC K=KCPWRFC A=0 F=0 SIGMA=0
CAP 3 0 C=CEQRFC1
DEF2P 1 3 IFCCT
! Augmented Mixer (5-port including embedding admittances)
NTEMP T=4
MXRN 1 2 % 3}
EMB1 1 0 M=1
EMB2 2 0 M=1
IFCCT 3 13 0 M=1
EMB4 4 0 M=1
EMB5 5 0 M=1
DEF5P 1 2 13 4 5 AUGMXR
l USB Mixer (2-port)
NTEMP T=4
```



```
    EMB1 1 0 M=
    EMB2 2 2 0 M=1
    DEF2P 4 3 USBMXR
LLSB Mixer (2-port)
    NTEMP T=4
    MXRN 1 2 3 4 5 0 M=1
    EMB1 1 0 M=1
    EMB4 4 0 M=1
    EMB5 5 0 M=1
    DEF2P 2 3 LSBMXR
    ! ISN (Isolator)
    NTEMP T=4
    ISOLATOR 1 2
    DEF2P 1 2 ISN
    ! AMP
    NTEMP T=4
    NPAR FMIN=0.147 MAG=0 ANG=0 RN=0
    GAIN 1 2 A=20 AR=-50 SL=0 F=0
    DEF2P12 AMP
    ! RxUSB (Complete receiver -- upper-sideband measurements)
    NTEMP T=4
    USBMXR 1 2 0 M=1
    IFCCT 2 3 0 M=1
    ISN 3-4 4 0 M=1
    AMP 4 5 0 M=1
    DEF2P 1 5 RXUSB
    ! RxLSB (Complete receiver -- lower-sideband measurements)
    NTEMP T=4
    LSBMXR 1 2 0 M=1
    IFCCT 2 3 0 M=1
    ISN 3 4 0 M=1
    AMP 4 4 5 0 M=1
    DEF2P 1 5 RXLSB
    ! ZIN (USB input impedance)
    RXUSB 1 2 0 M=1
```

163	RES $20 \mathrm{R}=50$
164	DEF1P 1 ZINUSB
165	! ZIN (LSB input impedance)
166	RXLSB $120 \mathrm{M}=1$
167	RES $20 \mathrm{R}=50$
168	DEF1P 1 ZINLSB
169	! ZMOUT (at end of RFC)
170	USBMXR $120 \mathrm{M}=1$
171	EMB4 $10 \mathrm{M}=1$
172	IFCCT $230 \mathrm{M}=1$
173	DEF1P 3 ZMOUT
174	TERM
175	Z $0=50$
176	FREQ
177	SWEEP 1250.2
178	MARKER
179	STEP 412
180	OUT
181	RxUSB DB[S21] RxUSB
182	RxUSB DB[S11] RxUSB
183	RxUSB TN RxUSB R
184	RxLSB DB[S21] RxLSB
185	RxLSB DB[S11] RxLSB
186	RxLSB TN RxLSB R
187	RXUSB SMI[S11] SMI(IN)
188	RXLSB SMI[S11] SMI(IN)
189	
190	ZMOUT SMI[S11] SMI (OUT)
191	GRID
192	RxUSB 025 5-20 4010 R 06010
193	RxLSB $0255-204010$ R 06010
194	LABEL
195	5-Port Mixer-Preamp Noise Analysys

! USB receiver gain
! USB input return loss
! USB receiver noise temperature
! LSB receiver gain
! LSB input return loss
! LSB receiver noise temperature
! USB S11 Smith chart
! LSB S11 Smith chart
! Mixer output S11 Smith chart
! USB receiver gain
! USB receiver noise temperature
! LSB receiver gain
! LSB receiver noise temperature
! USB S11 Smith chart
! Mixer output S11 Smith chart
GRID

RxUSB	0	25	5	-20	40	10	R	0	60

$\begin{array}{lllllllllll}\text { RxLSB } & 0 & 25 & 5 & -20 & 40 & 10 & \text { R } & 0 & 60 & 10\end{array}$
5-Port Mixer-Preamp Noise Analysys

