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Summary
In many waveguide bands more than one MIL Spec standard flange is available.  Flat and anti-cocking

flanges, compatible with certain MIL Spec flanges, are increasingly widely used.  Alignment tolerances on standard
flanges are acceptable for most practical applications, except when a flange is used with a smaller waveguide size
than originally intended; then tighter tolerances are needed.  This report discusses the relative merits of these flange
types and examines the effects of flange misalignment.  The effect of differential contraction between steel screws
and brass flanges is considered.  Recommendations are made for flange standardization on the ALMA.
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Standard Flange Types

The most widely used waveguide flanges are the US MIL Spec designs, designated MIL-F-3922 [1].  Table
I lists the main MIL Spec flanges for use at 18 GHz and above.  In most bands there are two standard types
available.  Despite the existence of the MIL Specs, some manufacturers use variations with different pin sizes and
tolerances, resulting sometimes in interference between supposedly compatible flanges.

TABLE I:  MIL Spec Flanges for Small Waveguides

WR-# Frequency 
GHz

 MIL-F-
3922/74-( )
0.373" dia. 

(TRG-714 type)

 MIL-F-
3922/67B-( )

0.75" dia.
(UG-387 type)

 MIL-F-
3922/67B-( )
1.125" dia.

(UG-383 type)

MIL-F-
3922/54-( )
0.75" sq.
(UG-599)

MIL-F-
3922/54-( )
0.875" sq. 

3 220-325 005 003M

4 170-260 004 004M

5 140-220 003 005M

6 110-170 002 006M

8 90-140 001 008M

10 75-110 010

12 60-90 009

15 50-75 008

19 40-60 007

22 33-50 006

28 26.5-40 005 003

42 18-26.5 004 001

Above ~90 GHz, experience at NRAO and elsewhere has found the 0.75" diameter UG-387 flange (Fig. 1)
more satisfactory than the smaller TRG-714 flange (Fig. 2).  This is because of the complex coupling hardware of
the latter type, which requires a high degree of parallelism between front and rear faces of each flange and tight
dimensional tolerances on the coupling hardware itself.  Also, it is difficult to machine the face of a mixer block or
amplifier housing to receive a TRG flange.  However, the UG-387 type is not without limitations: the four screws
must be tightened very carefully to avoid cocking one flange relative to the other, leaving a gap, and possibly
permanently deforming the mating surfaces.  Usually, a brightly illuminated surface is placed behind a pair of
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flanges during assembly to allow any misalignment to be seen.  The larger UG-383 flanges (Fig. 3) have the same
problem.  

Fig. 1 The MIL Spec 0.75" round flange (UG-387 type)  (from the Custom Microwave catalog).  Dimensions in inches. 

 

Fig.2.  The MIL Spec mini-contact flange (TRG-714 type)  (from the Custom Microwave catalog).  Dimensions in inches. 
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A further difficulty with the MIL Spec UG-387 flange when it is used at the higher frequencies is the
precision of alignment of the waveguides. The maximum clearance between the alignment pins and their mating 
pin-holes is 0.0035" radially, and the tolerances on pin and pin-hole position are 0.001" and 0.0015" radially,
allowing a possible misalignment between waveguides of 0.006".  It will be shown below that this is acceptable for
most applications in WR-10 or larger waveguide, but when these flanges are used with smaller waveguides, tighter
tolerances are necessary.  With WR-3 waveguide, a 0.006" misalignment is over a third of the waveguide height! 
The Mil Spec tolerances on the TRG-714 type flange allow a maximum lateral misalignment of 0.0032" between
waveguides.

Choke flanges are sometimes used to minimize the affect of the flange discontinuity.  However, they have
two major disadvantages [2]: (i) They have a useful bandwidth of ~20% — less than a full waveguide band.  (ii)
Misalignment between flanges can excite a number of higher-mode resonances in the choke, producing narrow-band
transmission suck-outs.  Also, the chokes are difficult to machine, especially with the small dimensions required at
millimeter wavelengths.  We conclude that choke flanges are not appropriate for most ALMA instrumentation.

Fig. 3.  The MIL Spec 1.125" round flange (UG-383 type)  (from the Custom Microwave catalog). Dimensions in inches.

Fig. 4.   The MIL Spec 0.750" square flange (from the
Custom Microwave catalog).  #4-40 UNC tapped holes may
also be used.  Dimensions in inches. 

Fig. 5.   The MIL Spec 0.875" square flange (from the
Custom Microwave catalog).  #4-40 UNC tapped holes may
also be used.  Dimensions in inches. 
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Some flanges, often called mill-back flanges, are made with the opening on the flange face equal in size to
the inside of the waveguide.  The waveguide is soldered into a larger milled opening at the rear of the flange and
does not extend through to the front face.  It is difficult to inspect the solder joint inside the flange and to remove
excess solder from inside the waveguide.  An imperfect joint between the waveguide and flange introduces a
reflection in addition to that due to flange-to-flange misalignment.  For millimeter wavelengths mill-back flanges
should be avoided.

Flat and Anti-Cocking Flanges

Several companies use anti-cocking variations of the MIL Spec flanges which are nominally compatible
with the corresponding MIL Spec standard.  Anti-cocking flanges, such as the one shown in Fig. 6, are available
from Anritsu, Flann, and HP.  The advantage of this design is that the flange can not be cocked by uneven
tightening of the screws, and it is easy to sense by  the screwdriver torque when the flange faces come into proper
contact.  The location of the screws in the thinner relieved annulus of the flange and the additional flexibility of the
thinner metal in that region tend to ensure that pressure is applied to both the inner boss and the outer anti-cocking
rim.  If the flange material is too thick, the relieved annulus does not provide this additional flexibility and a
completely flat flange may be just as good as long as proper relief is provided in the form of a counterbore around
each tapped hole and pin hole.  

For several years the NRAO CDL has been  using completely flat flanges on most millimeter wave
components.  For the 50-75 GHz band and higher these resemble the UG-387 type but without the central boss.  Pin
and screw locations and tolerances are to the MIL Spec, so compatibility is ensured.  From 26 to 50 GHz the 0.75"-
square UG-599 type of flange is preferred which has a flat face and is therefore not prone to cocking.

Fig. 6.  Anti-cocking flange (from the Flann Microwave catalog).  This design is fully compatible with the standard UG-
387 type of flange.  The holes for the removable inner pins are 1.588-1.600 mm dia.  Dimensions in mm.

Flat and anti-cocking flanges can be mated blind with uniform and controllable internal stress.  We have
found them to have superior flange-to-flange contact and more predictable cryogenic performance compared with
the central boss type (UG-387) and mini-contact (TRG-714) flange. The better cryogenic performance results from
the more even preloading achievable with these flanges.  With the conventional flange types it is difficult  to avoid
uneven stress on tightening the screws, even when they are equally torqued.  Differential contraction between the
screws and the flange material on cooling can then cause gaps to open with resulting mismatch, loss, and
microphonic effects. 

The use of captive screws with the UG-387 and -383 flanges (and their flat and anti-cocking derivatives)
has several advantages, particularly for test components used in a laboratory environment.  Because all flanges are
identical (i.e., there are no male and female flanges) any two flanges can be mated and the screws can be inserted
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from either side.  Nuts are not needed and there is no need for male-to-male and female-to-female adapters as there
is when non-captive screws are used and the threaded holes are in only one flange of a pair.  However, these
advantages may not be significant in permanent assemblies, such as ALMA receiver modules, where the use of non-
captive screws may in fact simplify machining and assembly.

A point to note in connection with any flanges used with captive screws is that the tapped screw holes must
have sufficient counterbore to allow a pair of flanges to be brought into contact when the screws are in place but not
yet inserted in their mating threads.  Thus, the depth of the counterbore measured from the flange face must be
sufficient to accommodate at least half the threaded length of the screw.  In the case of flanges compatible with the
UG-387 flange, the #4-40 tapped holes should be counterbored to a depth of 0.060" from the flange face.

Alignment Precision

The size of flange pins and pin holes varies between companies, even to the extent that some commercial
waveguide components with nominally identical flanges cannot be mated without force.  This was documented for
UG-387 flanges in [3].  Aerowave, Custom Microwave and M/A-Com follow the MIL Spec and use 0.0615" pins in
0.0670" holes.  Millitech uses 0.0635" pins in 0.0650" holes for their standard product line, but for those products
inherited from Hughes they used 0.0615" pins in 0.0635" holes until recently.  HP uses 0.0630" pins in 0.0654"
holes.  The NRAO MAP standard was 0.0615" pins in 0.0635" holes.

  

Fig. 7.  The HP anti-cocking flange as used on their VNA and calibration components (from Hewlett-Packard). 
Dimensions in mm.

The position accuracy of the pins and pin holes also varies with manufacturer.  The MIL Spec for the UG-
387 flange allows 0.001" (radially) on pin hole location and 0.0015" on pin location. When combined with the
0.0035" possible (radial) clearance between pins and pin holes, this allows a maximum possible misalignment
between waveguides of 0.006".  The HP anti-cocking version of the UG-387 type flange is shown in Fig. 7.  The
tolerances on the outer pins and pin-holes is tighter than the MIL Spec, giving a maximum misalignment of 0.003"
for a pair of waveguides using these flanges.  The inner pair of pins does not give significantly improved alignment,
but, according to HP, is included for customers to use "...if they wish to...", and to maintain precision if the outer
holes become enlarged from wear.

The un-modified 0.75"-square MIL Spec UG-599 flange has no dowel pins and, with standard #4-40 UNC
class 2A screws (min. diameter 0.1061"), the maximum misalignment between waveguides is 0.014".  Several
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companies offer a modified UG-599 flange with pins; however, the pin size is not standard between companies.

Effect of Waveguide Misalignment

The effect of misalignment between waveguides has been studied by several authors [4]-[8].  However,
these theoretical papers consider lateral or angular misalignments, but not both, and deducing reflection coefficients
across a full waveguide band is laborious.  For the present work, the electromagnetic simulator QuickWave [9] was
used to study the effects of various degrees of misalignment.  The simulations were done for WR-10 waveguide
which has width a = 0.100", height b = 0.050", and nominal frequency band 75-110 GHz.  The results are included
in the appendix.  It is evident that with a 0.006" lateral misalignment, the maximum possible with a  MIL Spec UG-
387 type flange, |S11|2 can be as high as -23 dB, and that occurs when the misalignment is purely in the b-direction. 
Rotational misalignment is seen to be relatively unimportant.  The smaller misalignment (0.003" max.) obtained
using the HP flange in Fig. 7 gives |S11|2 < -35 dB.  For the 0.75"-square UG-599 flange in the 40-60 GHz band,
without dowel pins, the maximum misalignment of 0.014" gives |S11|2 < -20 dB.

In the context of ALMA instrumentation, the alignment precision of the MIL Spec flanges up to ~100 GHz
should be acceptable for most applications.  The -20 dB maximum reflection corresponds to a VSWR of 1.2.
However, two such flange joints in a waveguide run could produce a reflection as great as -14 dB (VSWR = 1.5).

When the MIL Spec UG-387 type of flange is used substantially above 100 GHz, the effects of
misalignment are more severe.  With WR-3 waveguide (220-325 GHz), the maximum misalignment (0.006") can
give |S11|2 as large as -6.7 dB (VSWR = 2.7).  This suggests that pin and pin hole tolerances above ~100 GHz should
be scaled inversely with frequency in accordance with:

 (tolerance at frequency f GHz) = (tolerance in WR-10) x (100/f).                                       (1)
At 300 GHz the maximum possible flange misalignment would then be 0.002", and at 600 GHz 0.001" which is
difficult to achieve with the usual machining techniques.  In each case |S11|2 < -23 dB.

Flange Screw Torque

The MIL Spec #4-40 captive stainless steel screw for the UG-383 and UG-387 flanges is shown in Fig. 8. 
We have not been able to find a recommended seating torque for these.  For a standard #4-40 UNC stainless steel
screw the recommended seating torque is 8 in-lb (Unbrako Screw Data Guide), but the captive screw has a smaller
shank diameter than the root diameter of the standard screw so it is not clear that the full 8 in-lb torque should be
used.  To determine an appropriate seating torque, we measured the yield torque, at which the screws become
permanently elongated by 1%, for several screws of each type.  For a standard (non-captive) #4-40 stainless steel
screw the yield torque was ~12 in-lb and for the captive screw it was ~8 in-lb.  It seems appropriate to scale the
seating torque with the yield torque, so the captive flange screw should be torqued to 8 x (8/12) K 5 in-lb.  (If
flanges are made of a material softer than brass it is possible that the screw torque will be limited by the flange
material and not by the screw.  Then the limiting thread torque should be determined experimentally and an
appropriately reduced seating torque used.)

Fig. 8  #4-40 captive screw for UG-383 and 387 flanges  (from the Aerowave catalog).  The material is 303 or 304 stainless
steel and the unthreaded shank diameter is 0.078" + 0/-0.002".  Dimensions in inches.  
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If two brass UG-383 or -387 waveguide flanges are assembled with these screws at room temperature, then
cooled to 4 K or 20 K, the differential contraction between the brass and stainless steel is approximately 0.1% or
0.0002 inches between the screw head and the beginning of the thread.  This reduces the clamping force between
the flanges by an amount equivalent to unscrewing each screw by an angle of 3b.  We have found experimentally
that, for these captive screws, a rotation of an already tightened flange screw by 3b corresponds to a change of
torque of approximately 1 in-lb.  It would seem appropriate, therefore, to increase the seating torque on waveguide
flange screws from 5 to 6 in-lb when they are intended for cryogenic operation.  (This is below the measured yield
torque of 8  in-lb at which the screw becomes permanently deformed.)

The 0.750" and 0.875" square flanges in Figs. 4 and 5 use (non-captive) #4-40 screws, but with the option
of using nuts or having tapped holes in one flange of a pair.  From the viewpoint of differential thermal contraction,
tapped flanges are preferable because the distance between the screw head and the mating thread is half as great as
when clearance holes and nuts are used, resulting in a differential contraction smaller by a factor of two.  Based on
the argument in the paragraph above, when the flanges contain tapped holes, (non-captive) #4-40 stainless steel
screws, for which the yield torque is ~12 in-lb, should be tightened to a torque of 8 in-lb for room temperature
operation.  We have determined experimentally that an additional torque of 2 in-lb is required to rotate the screw 3b,
which is required to compensate for the 0.0002" differential contraction on cooling.  If clearance flange holes and
nuts are used, the differential contraction is 0.0004" which requires 6b additional screw rotation, or an increase in
seating torque to 12 in-lb.  As this is the yield torque, we recommend against using nuts and clearance holes for
cryogenic operation of these flanges, preferring tapped flanges.

Recommendations

From the above discussion the following recommendations are made for the use of waveguide flanges on ALMA
instrumentation:

(a)  In the 50-75 GHz band and higher, a 0.75"-diameter flat or anti-cocking flange, compatible with the MIL Spec
UG-387 flange, is preferred.  The anti-cocking flange resembles that in Fig. 6 but without the inner pins.  From 26-
50 GHz and also in the 40-60 GHz band, the 0.75"-square flat UG-599 flange, as in Fig. 4, is preferred, with or
without tapped screw holes.  If the 1.125" diameter UG-383 type of flange (Fig. 3) must be used, it should be
modified to include an anti-cocking rim.  In all cases, pin holes and tapped screw holes should be properly
counterbored to prevent local distortions of the mating surfaces.  When captive screws are used the counterbores
must be sufficient to accommodate half the threaded length of the screws.

(b)  The above choice of flanges with MIL Spec tolerances ensures a return loss > 20 dB up to 110 GHz (WR-10). 
For higher frequencies, flange tolerances should be reduced to maintain a maximum misalignment between
waveguides  according to: (max misalignment at frequency f GHz) = (max misalignment in WR-10) x (100/f) .

(c)  Choke flanges and mill-back flanges should be avoided.

(d)  For cryogenic operation, the torque on stainless steel screws in brass waveguide flanges should be increased to
allow for differential contraction (which tends to loosen the screws).  For UG-383 and -387 flanges, the torque on
the captive screws should be increased from 5 to 6 in-lb (before cooling).  For flanges using non-captive #4-40
stainless steel screws, the torque should be 8 in-lb at room temperature, increasing in the case of cryogenic
operation by 1 in-lb for every 0.1 inch length of screw between the head and the start of the mating thread, as long
as the yield torque of 12 in-lb is not exceeded.  If the flange must be made of a soft material which limits the screw
torque, the limiting torque should be measured and an appropriate seating torque used.

(e)  The difficulty of obtaining acceptable flange alignment in the higher ALMA frequency bands and the high loss
of  small single-mode waveguides are reasons to avoid waveguide flanges as far as possible at high frequencies.  At
700 GHz, rectangular copper waveguide has a loss of ~2 dB/inch at room temperature (lower when cold).  The
minimum size of a flange and the need to insert screws from at least one side of a flange joint make it difficult to
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incorporate a length of waveguide less than about 0.5" between the intrinsic circuit elements when two waveguide
components are joined in this manner.  In a millimeter wave receiver, flanges can be avoided by integrating as much
as possible of the high frequency circuit onto a single substrate and/or into a single metal block.  Waveguide LO
couplers and feed horns can be machined directly into a mixer block, and electroformed feed horns can be pressed
into a larger metal block in which the location of the electroformed waveguide becomes the reference for
subsequent machining.
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Appendix —  Simulation of Misaligned Waveguide Flanges
The electromagnetic simulator QuickWave [9] was used to study the effects of lateral and angular misalignment

of waveguide flanges.  The simulations were done for WR-10 waveguide which has width a = 0.100" height b =
0.050", and a nominal frequency band 75-110 GHz.  

Fig. A1.  Effect of a misalignment in the a direction.

Fig. A2.  Effect of a misalignment in the b direction.

Fig. A3.  Effect of misalignments in the a and b directions simultaneously.

Fig. A4.  Effect of an angular misalignment, alone, and with a lateral misalignment in the a or b direction.  

Fig. A5.  Effect of an angular misalignment with simultaneous misalignments in both a and b directions.  
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∆a = 0.003"
∆b = 0
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -38 dB

∆a = 0.006"
∆b = 0
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -27 dB

∆a = 0.010"
∆b = 0
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -20 dB

Fig. A1.  Effect of a misalignment in the a direction. The waveguide size is WR-10 (a = 0.100" and b = 0.050", with
a nominal frequency band 75-110 GHz).  The graphs show |S11|2 in dB vs frequency over 70-120 GHz.
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∆a = 0
∆b = 0.003"
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -35 dB

∆a = 0
∆b = 0.006"
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -23 dB

∆a = 0
∆b = 0.010"
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -15 dB

Fig. A2.  Effect of a misalignment in the b direction.  The waveguide size is WR-10 (a = 0.100" and b = 0.050",
with a nominal frequency band 75-110 GHz).  The graphs show |S11|2 in dB vs frequency over 70-120 GHz.
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∆a = 0.003"
∆b = 0.003"
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -40 dB

∆a = 0.005"
∆b = 0.005"
Rotation = 0

Over 75-110 GHz (WR-10):
|S11|2 < -31 dB

Fig. A3.  Effect of  misalignments in the a and b directions simultaneously. The waveguide size is WR-10 (a =
0.100" and b = 0.050", with a nominal frequency band 75-110 GHz).  The graphs show |S11|2 in dB vs frequency
over 70-120 GHz.
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∆a = 0
∆b = 0
Rotation = 6b

Over 75-110 GHz (WR-10):
|S11|2 < -38 dB

∆a = 0.005"
∆b = 0
Rotation = 4b

Over 75-110 GHz (WR-10):
|S11|2 < -29 dB

∆a = 0
∆b = 0.005"
Rotation = 4b

Over 75-110 GHz (WR-10):
|S11|2 < -26 dB

Fig. A4.  Effect of an angular misalignment, alone, and with a lateral misalignment in  the a or b directions.  The
waveguide size is WR-10 (a = 0.100" and b = 0.050", with a nominal frequency band 75-110 GHz).  The graphs
show |S11|2 in dB vs frequency over 70-120 GHz.
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∆a = 0.003"
∆b = 0.003"
Rotation = 6b

Over 75-110 GHz (WR-10):
|S11|2 < -35 dB

∆a = 0.005"
∆b = 0.005"
Rotation = 4b

Over 75-110 GHz (WR-10)"
|S11|2 < -32 dB

Fig. A5.  Effect of an angular misalignment with simultaneous misalignments in both a and b directions.  The
waveguide size is WR-10 (a = 0.100" and b = 0.050", with a nominal frequency band 75-110 GHz).  The graphs
show |S11|2 in dB vs frequency over 70-120 GHz.


