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Abstract. The degradation in sensitivity resulting from a linear slope in the frequency response
at the correlator input is calculated as a function of the decibel difference in the levels at the band
edges. Three cases are considered, in which the slope is linear in voltage, linear in power, and linear
in decibels. In all cases the dergradation is slightly less than 1% for a 2 dB difference across the
band. An alternative approach to the calculation is given in the Appendix.

For a given IF bandwidth ∆ν the sensitivity of an interferometer is maximized if the system
gain is constant with frequency over the bandwidth, that is, the bandpass shape is rectangular.
The responses of electronic components, including attenuation in cables, generally result in a devi-
ation from the ideal bandpass shape. A major feature of this deviation is often a sloping response
as in Fig. 1. Variations in bandpass shape result from the analog section of the system, and in
the ALMA array, in which the signals are digitized at the antennas, one can expect the bandpass
shapes to be similar for all antennas. This is unlike the original VLA system in which the waveg-
uide responses, which are different for each antenna, are a major contributor to deviations of the
bandpass responses. Closure errors can result from variations in the responses from one antenna
to another, but if the deviations from the ideal rectangular shape are similar for all antennas, the
major effect will be a degradation in sensitivity, which is the subject of this memorandum.

A derivation of the degradation factor resulting from the shape of an RF or IF bandpass function
can be found in Thompson Moran and Swenson (1986, see Eq. 7.25; 2001, see Eq. 7.36). In the
case where the frequency responses (in both amplitude and phase) are the same for both antennas,
the signal to noise ratio is proportional to a degradation factor

D =
∫∞
0 |h(ν)|2dν√

∆ν
∫∞
0 |h(ν)|4dν

, (1)

where ν represents frequency and h(ν) is the voltage frequency response of the signals at the
correlator input. Three cases are considered in which (1) the voltage response, (2) the power
response, and (3) the response expressed in decibels, varies linearly with frequency.

Voltage-linear slope The voltage response h(ν) varies linearly with frequency as in Fig. 1. If h0

is the voltage gain at the center frequency ν0 we can write,

h(ν) = (h0 −∆h/2) +
(
ν − ν0 +

∆ν

2

)∆h

∆ν
, ν0 − ∆ν

2
< ν < ν0 +

∆ν

2
. (2)
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Figure 1: Frequency spectrum at the correlator input for center frequency ν0 and bandwidth ∆ν.
h0 is the voltage level at the band center and ∆h is the difference in levels between the band edges.
Note that the calculated values of the degradation factor depend on the difference in power levels
at the band edges, but not on the direction of the slope (i.e. whether the response increases or
decreases with frequency).

Then, ∫ ν0+∆ν
2

ν0−∆ν
2

|h(ν)|2dν = ∆ν
(
h2
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1
12

∆h2
)
, (3)

and ∫ ν0+∆ν
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2

|h(ν)|4dν = ∆ν
(
h4

0 +
1
2
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1
80
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)
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From Eq. 1, the degradation factor for this case is

Dvolt =
1 + 1

12

(
∆h
h0

)2

√
1 + 1

2

(
∆h
h0

)2
+ 1

80

(
∆h
h0

)4
. (5)

If δ is the difference in the gains at the band edges measured in decibels,

δ = 10 log10

(
1 + 1

2(∆h
h0

)

1− 1
2(∆h

h0
)

)2

, and
∆h

h0
=

2(10δ/20 − 1)
10δ/20 + 1

, (6)

which allows Dvolt to be calculated from given values of δ.

Power-linear slope The power response is g(ν) = |h(ν)|2. The bandpass response is equivalent
to that in Fig. 1 if we imagine that the symbols h0 and ∆h are replaced by g0 and ∆g, which are
the mid-band power gain and the difference in the band edge power gains, respectively. In this case
we have

g(ν) = (g0 −∆g/2) +
(
ν − ν0 +

∆ν

2

)∆g

∆ν
, ν0 − ∆ν

2
< ν < ν0 +

∆ν

2
, (7)
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∫ ν0+∆ν
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ν0−∆ν
2

|h(ν)|2dν =
∫ ν0+∆ν

2

ν0−∆ν
2

g(ν)dν = g0∆ν, (8)

and ∫ ν0+∆ν
2

ν0−∆ν
2

|h(ν)|4dν =
∫ ν0+∆ν

2

ν0−∆ν
2

g2(ν)dν = ∆ν
(
g2
0 +

1
12

∆h2
)
. (9)

Thus from Eq. 1 we obtain for the degradation factor

Dpower =
1√

1 + 1
12

(
∆g
g0

)2
. (10)

The relation between the decibel difference in the gains at the band edges and ∆g/g0 is given by

δ = 10 log10

(
1 + 1

2(∆g
g0

)

1− 1
2(∆g

g0
)

)
, and

∆g

g0
=

2(10δ/10 − 1)
10δ/10 + 1

, (11)

which allows Dpower to be calculated from δ.

Slope linear in decibels Here the bandpass response in Fig. 1 is taken to represent the power
response measured in decibels. For the power response as a function of frequency we can write
h2(ν) = h2

0 exp[σ(ν − ν0)]. Then the required integrals are

∫ ν0+∆ν
2

ν0−∆ν
2

|h(ν)|2dν =
1
σ

[
eσ∆ν/2 − e−σ∆ν/2

]
, (12)

and ∫ ν0+∆ν
2

ν0−∆ν
2

|h(ν)|4dν =
1
2σ

[
eσ∆ν − e−σ∆ν

]
. (13)

From Eq. 1, the degradation factor is

DdB =

√
2(eσ∆ν − 1)

σ∆ν(eσ∆ν + 1)
. (14)

(This result can be found in Table 7.1 of Thompson et al. (1986, 2001) for the case where the slope
parameter σ takes different values for the two antennas.) The decibel difference between the gains
at the band edges is

δ = 10 log10

(
eσ(ν0+∆ν/2)

eσ(ν0−∆ν/2)

)
= 10(log10 e)σ∆ν, (15)

which allows DdB to be calculated from δ.

Results Curves for the degradation as a function of the decibel difference δ (calculated using
Mathcad) are given in Fig. 2 for the range of values which are of practical interest. Specification
of a limit on δ for the ALMA receiving system requires consideration of the magnitude of other
instrumental effects that result in degradation of sensitivity. In general, however, a tolerance on
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Figure 2: Degradation factor as a function of the gain difference in decibels at the band edges. The
solid curve is the voltage-linear response, the small-dash curve is the power-linear response, and
the large-dash curve is the decibel-linear response.

the slope of 2 dB across the band, which results in 0.86% degradation in sensitivity, is a desirable
goal.

The behaviour of the degradation as δ becomes very large is of mathematical rather than
practical interest. In the voltage-linear case the response becomes a triangular function and the
degradation factor as a function of δ levels off at a value of 0.745. Similarly, in the power-linear
case the degradation levels off at 0.866. In the decibel-linear case the degradation factor contin-
ues to decrease towards zero as δ increases, since the bandwidth at any decibel level is inversely
proportional to δ.

Acknowedgements Thanks are due to J. C. Webber for suggesting this study, F. R. Schwab for
derivation of Eq. (4) using Mathmatica, and P. P. Murphy for help with Fig. 1.

Appendix

An alternative approach, illustrated by derivation of Dpower, is as follows. Consider an interfer-
ometer with an ideal rectangular passband of width ∆ν. The signal-to-noise ratio is Rsn(∆ν).
Now suppose that the bandwidth is divided into N channels of width ∆ν/N , as in a spectral-line
correlator. The signal to noise ratios for the individual channels are all equal to Rsn(∆ν)/

√
N .

Suppose that the IF power gains of the channels are not equal but are proportional to 1, (1 + ρ),
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(1+2ρ),. . . [1+(N−1)ρ], in order of increasing frequency. The correlator outputs for the individual
channels are summed without correction for the gain variation. The result is the interferometer
response for a bandwidth with a stepped gain function. In summing the channel outputs, the signal
voltages (from the correlator output) for the channels combine additively, and are each proportional
to the IF power at the correlator input. Thus the combined signal is equal to the signal in the first
channel multiplied by

N∑

n=1

[1 + (n− 1)ρ] = N [1 +
1
2
(N − 1)ρ]. (16)

The rms noise from each channel is proportional to the IF power gain, but the noise voltages at the
detector outputs, being uncorrelated, combine as the square root of the sum of the squares. Thus
the rms noise after combination is equal to the noise in the first channel multiplied by

√√√√
N∑

n=1

[1 + (n− 1)ρ]2 =

√
N

[
1 + (N − 1)ρ +

(N − 1)2ρ2

3
+

(N − 1)ρ2

6

]
. (17)

[In Eqs. 16 and 17 the following summations have been used:
∑N

n=1 n = N(N +1)/2 and
∑N

n=1 n2 =
N(N +1)(2N +1)/6.0.] From Eqs. (16) and (17) the signal to noise ratio of the combined channels
is

Rsn(∆ν)√
N

× N [1 + 1
2(N − 1)ρ]√

N

[
1 + (N − 1)ρ + 1

3(N − 1)2ρ2 + 1
6(N − 1)ρ2

] (18)

Now (N − 1)ρ is equal to the total increase in gain from the first channel to the last, which we will
denote by ρtot. Keeping ρtot constant, let N tend to infinity. Then ρ tends to zero and the stepped
response becomes a smooth slope. The combined signal-to-noise ratio [expression (18)] becomes

Rsn(∆ν) × 1 + 1
2ρtot√

1 + ρtot + 1
3ρ2

tot

. (19)

The expression on the right-hand side of the multiplication symbol is the degradation factor, and is
equal to unity for ρtot = 0 . This result can be related to the decibel ratio of the gains at the band
edges by δ = 10 log10(1+ ρtot). In terms of Dpower in Eq. 10, (∆g/g0) is equal to ρtot/[1+ (ρtot/2)].
By substituting ρtot = (∆g/g0)/[1− (∆g/2g0)] in expression (19), the degradation factor is found
to be identical to the result in Eq. 10.
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