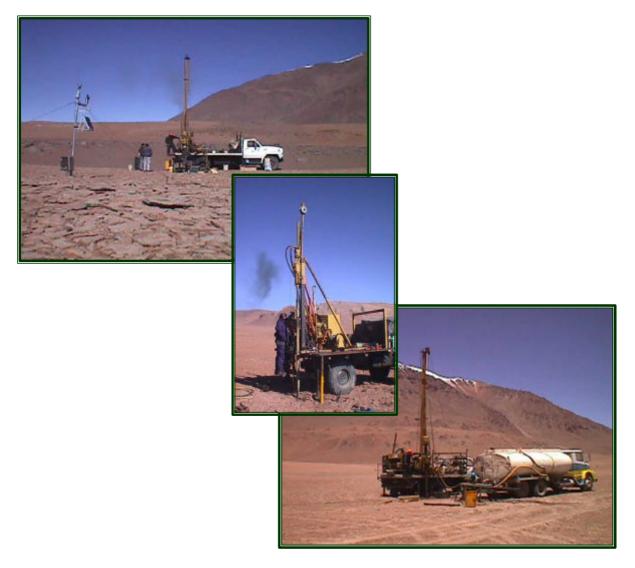
ALMA Memo # 408

REPORT GEO 99/37 (REV. A)


GEOTECHNICAL STUDY CHAJNANTOR SITE, II REGION NOBEYAMA RADIO OBSERVATORY NRO – NRAO

Luis Rojas (Geo Ambiental Consultores Ltda.)

March 2000

REPORT GEO 99/37 (REV. A) GEOTECHNICAL STUDY

CHAJNANTOR SITE, II REGION NOBEYAMA RADIO OBSERVATORY NRO - NRAO

MARCH, 2000

GEOTECHNICAL STUDY CHAJNANTOR SITE, II REGION, CHILE NOBEYAMA RADIO OBSERVATORY

NRO - NRAO

TABLE OF CONTENTS

SECTION

		Pages
1.	Introduction	01
2.	Site Description	02
3.	Geologic Setting	03
4.	Field Exploration and Laboratory Program	05
5.	Geotechnical Characteristics of the Subsurface	10
6.	Recommendations	17
7.	References	18

TABLE

1.	Location of Borings	05
2.	Depth to Massive Rock	06
3.	Unconfined Compression Test on Selected Rock Specimens	07
4.	Rock Mass Rating System for Jointed Rock Masses (Bieniawski)	13
5.	Geotechnical Parameter Correlations (Hoeck and Brown)	14
6.	Geotechnical Parameters for the Site	15
7.	Geotechnical Parameters for Sand at Location of Boring N°5	16

FIGURE

1.	Trench at Boring N°5 Site. Grain Size Distribution of Sand	09
2.	Photographs of Broken Rock in Trenches	11
3.	Photographs of Typical Rock Outcrop at Site	12

APPENDIX

A. Boring Logs and Core Phot	tographs
------------------------------	----------

GEOTECHNICAL STUDY CHAJNANTOR SITE, II REGION, CHILE NOBEYAMA RADIO OBSERVATORY

NRO - NRAO

1. INTRODUCTION

The present Report is written by *Geo Ambiental Consultores Ltda*. and summarizes the geotechnical study of the Nobeyama Radio Observatory Authority Chajnantor Site in the II Region, Chile.

The site is a fairly flat area (pampa) at high altitude (approximately 5,000 m above sea level), located at the foot of the Chajnantor and Chascón Mountains, not far from The Jama Pass International Road, about 80 km from the town of San Pedro de Atacama.

The Nobeyama Radio Observatory Authority plans to install an array of large parabolic antennas at the site. Thus, the foundation engineers require the geotechnical characteristics of the subsurface for their design work. The NRO representatives indicated a total of six locations to drill and investigate.

The following Sections summarize the field and laboratory work developed for the project, give a geological description for the area and indicate the design parameters requiered for the development of the infrastructure for the antennas at the six locations. Finally, the Consultant makes recommendations for future developments in the area of the study. Boring logs and photographs of the rock cores are presented in the Appendix.

2. SITE DESCRIPTION

The site considered for the NRO project is within the CONICYT Science Preserve and sorrounds the Chascón Mountain which has an elevation slightly higher than 5,700 meter above sea level.

The area is fairly flat and most of its extention slopes gently to the South. It's mean elevation is 5,000 meters above sea level and it has a number of depressions and other topographic features that make it uneven in many areas. Some of these depressions have been formed by incipient water flows which occur with rainfall mostly during the summer months (January and February). The surface shows a thin layer of gravel and pebbles followed by a few centimeters of sand, although rock outcrops are notorious at the site. Vegetation is almost non-existing due to its high altitude and the very little rainfall experienced in the region.

To the South-West of the Chascón Mountain the landscape shows the Agua Amarga Hill within the site, with an elevation a little over 5,050 meter above sea level.

A gas pipeline recently constructed crosses the area in a North-West to South-East direction from Argentina to the South of the Chajnantor and Agua Amarga, cutting it at a 30° angle from an East-West imaginary line.

A few dirt roads are present. Also two other scientific camps and small facilities are already installed in the area.

The NRO actual camp site is located at Pampa La Bola, a flat area, North of the Chascón Mountain and close to the International Road.

3. GEOLOGIC SETTING

Several stratified units, ranging from Paleozoic to Quaternary, and groups of plutonic rocks, have been distinguished in the overall region. The precordillera and Andean cordillera domain morphostructure contains upper Cenozoic volcanic rocks separated into two major groups, the ignimbrites and the volcanoes.

The ignimbrite is defined as a silicic volcanic rock forming thick, massive, compact, lavalike sheets covering wide areas. The rock is chiefly a finegrained rhyolitic tuff composed mainly of glass particles, firmly welded. The deposits are believed to have been formed by the eruption of dense clouds of incandescent volcanic glass in a semimolten or viscous state from groups of fissures.

The ignimbrites in the region are divided into three groups according to their ages, that is: Miocene, Pliocene and Pleistocene. They are constituted by pyroclastic flows, mainly dacitic and andesitic; the Cajón ignimbrite, present at the site, is dated from the Pleistocene-Holocene with 0,8 Million years. Its outcrop covers approximately 450 km² in the Calama sheet, extending another 530 km² to the South. Its thickness ranges from 250 m to a few meters, thinning to the West.

To the North-East of the Purico volcano (zone of interest), the unit is composed by tuff moderately to weakly welded with phenocristals of plagioclase, quartz, biotite and hornblend. Its matrix is composed of pieces of glass. Typically, the flows contain a large number of pumice. From a chemical point of view they are classified as chalcoalcalines. It is proposed that the Cajón ignimbrite was formed by the emission through concentric fractures around the Purico volcano.

The volcanoes are divided into three groups: Miocene, Pliocene-lower Pleistocene and upper Pleistocene-Holocene, with the Chajnantor and Purico being strato-volcanoes from the later group.

The Purico volcanic group is believed to have evolved around an old strato-volcano (the Purico) with andesitic composition, with a later emission of very viscous lava flows (North-East and South-East of the Purico and on the South-East flank of the Chajnantor). The emission of ignimbritic flows would have come later in the superior Pleistocene. The last stage would be the occurance of the Toco, La Torta, Chajnantor, and Chascón volcanoes around the Purico.

The tectonic structure shows very little disturbance by recent activity. The only structures known correspond to normal faults and fractures of little magnitude with three main system: N-S, NW-SE, NE-SW.

The N-S system in line with the N-S volcanic chain, affect the Cajón ignimbrite West of the Purico, but has not produced vertical movement on the rock. It seems that they have been inactive prior to the ignimbrite flows.

The NW-SE and NE-SW systems affect various volcanic units in the area. They are minor structures with local development. These systems appear controlled by the local volcanic activity. They would be the result of E-W extension movements.

4. FIELD EXPLORATION AND LABORATORY PROGRAM

4.1. Field Exploration

The field exploration consisted of drilling six borings with HQ tools in combination with a wireline double wall sampler. No additives were used during the drilling operation and only fresh water was applied as a coolant to the cutting tool at the bottom of the drilling rod.

The location for the borings is indicated in Table 1.

Table 1

Boring	T T (*C*)*	Coordi	nates (*)
N°	Identification	East	North
1	Pampa La Bola	0.633.650	7.460.200
2	ASTE Candidate Site	0.632.940	7.459.040
3	Chajnantor North	0.627.410	7.454.050
4	Chajnantor South	0.627.610	7.452.850
5	Saddle Point	0.631.250	7.455.850
6	Chascón East	0.637.710	7.457.280

Location of Borings

Note: (*) GPS positions (UTM/UPS WG S84) provided by NRO

The drilling was done during a period of 10 days, between February 1st and February 10th, 2000. A coordination meeting with the representatives of NRO in San Pedro de Atacama was conducted on January 31 and a site visit was acomplished that afternoon.

The corresponding boring longs and photographs for the six sites are presented in the Appendix. The logs indicate depth, percent of sample recovery, determination of Rock Quality Designation (as a percent of the sum of the samples having length greater than 10 cm over the coring length) and observations made for each core run.

The subsurface in general is characterized by a thin top layer of residual soil over very broken to broken rock. The depth to massive rock (very few discontinuities, cracks or fissures) is indicated in Table 2. The rock, as described by the Consultant's geologist is ignimbrite (welded tuff), reolithic with quartz and some fragments of volcanic rocks. The rock is medium hard, abrassive and stable. It shows weakness planes coincident with deposition planes in which the rock is weakly welded or indicates different events. The geologist description is in agreement with the general geologic setting.

Table 2

Boring	Total Depth	Depth To Massive Rock
\mathbf{N}°	(m)	(m)
1	15.2	1.6
2	15.3	3.6
3	15.2	2.0
4	15.0	2.0
5	16.6	15.0
6	15.0	7.0

Depth To Massive Rock

In addition to the six borings a 1.50 m deep trench was excavated at the site of Boring $N^{\circ}5$ where sand was found to a depth of 15 m. Samples were taken from the bottom of it and two in-situ unit weight measurements were performed.

4.2. Laboratory Testing and Test Results

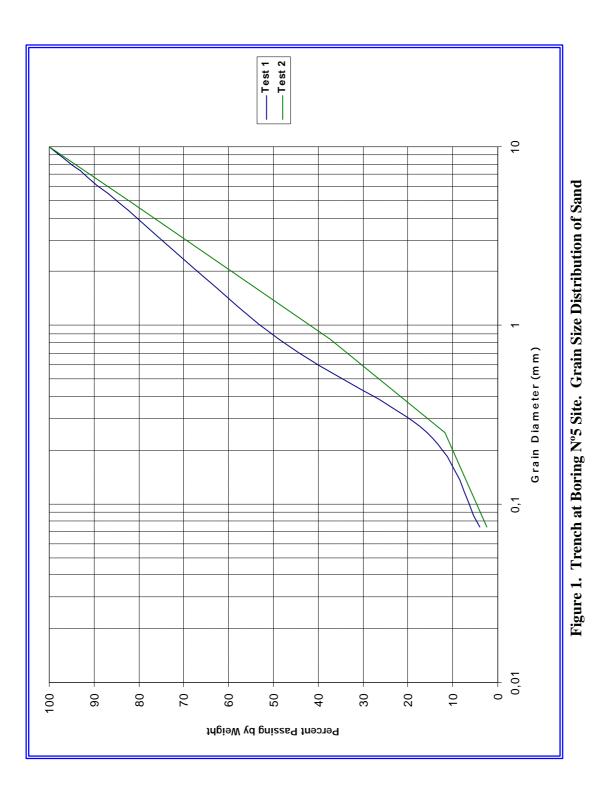
The laboratory testing of the rock samples from the borings consisted of unconfined compression tests. Due to the homogeneity of the rock encountered at the site, only a total of eight test were performed. Each sample was chosen at a depth to be representative for the foundations to be designed.

The samples tested under unconfined compression conditions were prepared in the laboratory so that the length to diameter ratio was equal or slightly greater to two. The ultimate load for the eight tests is presented in Table 3.

Table 3

Boring	Specimen Depth	Unit Weight	Ultimate Axial Resistance
\mathbf{N}°	(m)	(Kg/m³)	(Kg/cm ²) ⁽¹⁾
1	2.0-2.2	2,189	279
1	1.4-1.6	2,057	226
2	3.5-3.75	2,174	406
3	3.9-4.1	2,128	202
3	3.2-3.4	1,998	113
4	2.3-2.5	2,089	124
4	2.0-2.4	1,993	216
6	7.4-7.6	1,931	161
$\overline{\chi}$		2,070	216
S		0.086	88

Unconfined Compression Tests on Selected Rock Specimens


Note ⁽¹⁾: 1 Kg/cm² = 98.07 kPa

The tests were conducted at the Laboratory of the Technical University Federico Santa María in Valparaíso.

The testing of the sand samples obtained from the trench consisted of index properties such as moisture content determination, grain size distribution and specific weight of mineral particles determination.

The two in-situ unit weight tests performed at the bottom of the trench show an average wet unit weight of 1.75 Ton/m^3 , with a natural moisture content of 7% which implies a dry unit weight of 1.6 Ton/m^3 .

The specific gravity of the mineral particles was measured to be 2.5, whereas the grain size distribution obtained for the samples taken to the laboratory is presented in Figure $N^{\circ}1$.

5. GEOTECHNICAL CHARACTERISTICS OF THE SUBSURFACE

As previously indicated, the subsurface at the site is characterized by a thin layer of residual soil over vey broken rock. This horizon was found to be of varying depth (see Table 2) and is believed to have formed by action of frost-defrost cycles of the water infiltrated in the crevices and cracks over may years.

A previous investigation performed by this Consultant by excavating trenches showed the nature and morphology of the broken rock horizon. Figure 2 shows two photographs of typical walls in the trenches. Figure 3 has two photographs of rock outcrop at the site also showing the "layering" morphology of the meteorized rock at the surface.

Due to the stringent conditions imposed by the equipment to the foundations, this Consultant considers necessary to locate the foundations at a depth below the broken rock horizon or at least 2 m below the surface. This is a requisite to isolate the foundation from the uplifting forces of frost heave effect.

The statement above implies that (but for Boring N°5 location), the horizon of most interest to characterize is the massive ignimbritic rock. To do this, the rock has been classifies according to the Rock Mass Rating (RMR) system proposed by Bieniawski, which is presented in Table 4.

UPPER HORIZON BROKEN ROCK

LOWER HORIZON MASSIVE ROCK

BROKEN ROCK WEATHERED BY FROST-DEFROST CYCLES

Figure 2. Photographs of Broken Rock in Trenches

Figure 3. Photographs of Typical Rock Outcrop at Site

12

Table 4

Rock Mass Rating System For Jointed Rock Masses

(Bieniawski)

A. Classification Parameters and Their Ratings

	PARAM	IETER			RANGES OF VAL	LUES			
	Strength	Point-load strength index	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	-unia	or this low ra axial compre est is prefer	essive-
1	intact roack material	Uniaxial compressive strength	>250 MPa	100-250 MPa	50-100 MPa	25 - 50 MPa	5-25 MPa	1-5 MPa	< 1 MPa
	R	ating	15	12	7	4	2	1	0
2	Drill core	quality RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%	
2	R	ating	20	17	13	8		3	
3		discontinuities	> 2 m	0,6 - 2 m	200 - 600 mm	60 - 200 mm		< 60 mm	
5	R	ating	20	15	10	8		5	
4	Condition of	discontinuities	Very rough surfaces. Not continuous No separation Unweathered wall rock	Slightly rough surfaces. Separation < 1 mm Slightly weathered walls	Slightly rough surfaces. Separation < 1 mm Highly weathered walls	Slickensided surfaces OR Gouge < 5 mm thick OR Separation 1-5 mm. continuous	Sep	ouge > 5 mm OR aration > 5 m Continuous	mm
	R	ating	30	25	20	10		0	
5	Ground water	Inflow per 10 m tunnel length Joint water <i>Ratio</i> <i>pressure</i> mayor principal stress General conditions	OR OR OR Completely dry	<10 litres/min 0.0 – 0.1 0R Damp	0 - 25 litres/min 0R 0,1 - 0,2 OR Wet	25 - 125 Iitres/min 0.2 - 0.5 OR Dripping		> 125 > 0,5 Flowing	
I	R	ating	15	10	7	4		0	

B. Rating Adjustment for Joint Orientations

Strike a orientation		Very favourable	Favourable	Fair	Unfavourable	Very Unfavourable
	Tunnels	0	-2	-5	-10	-12
Ratings	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

C. Rock Mass Classes Determined from Total Ratings

Rating	$100 \leftarrow 81$	$80 \leftarrow 61$	$60 \leftarrow 41$	$40 \leftarrow 21$	< 20
Class N°	I	п	ш	IV	v
Description	Very good rock	Good rock	Fair rock	Poor rock	Very poor rock

D. Meaning of Rock Mass Classes

Class N°	Ι	П	Ш	IV	V
Average stand-up time	10 years for 15 m span	6 months for 8 m span	1 week for 5 m span	10 hours for 2,5 m span	30 minutes for 1 m span
Cohesion of the rock mass	> 400 kPa	300 - 400 kPa	200 – 300 kPa	100 – 200 kPa	< 100 kPa
Friction angle of the rock mass	> 45°	35° - 45°	25° - 35°	15° - 25°	< 15°

Under the RMR system the designer can also apply the following correlations:

Table 5Geotechnical Parameter Correlations(Hoeck and Brown)

DMD	Friction Angle	c-Intercept
RMR	(°)	(kPa)
20	30	96
40	35	144
60	40	201
80	45	306

E_i	=	0.564	RMR ^{1.958} (ksi)	$(RMR \le 60)$
E_i	=	290	RMR - 14,500	(ksi) (RMR > 60)
(1ksi	=	6.9	MPa)	

This Consultant has classified the upper broken rock and the lower massive rock as shown in Table 6, characterizing the materials with the values of the geotechnical parameters indicated in this Table.

Table 6

Geotechnical Parameters For the Site

Total Unit Weigth = 2 Ton/m^3 Poisson Ration = 0.2

Parameter	Broken Rock	Massive Rock	
RMR	35	70	
Friction Angle (°)	35	42	
c-Intercept (Kpa)	134	250	
Ei (MPa)	10,000	40,000	

The values of the friction angle and the c-Intercept correspond to applying the Mohr-Coulomb strength model with a straight failure envelope.

It should be note that the cyclic loading of the foundation will come from the wind and thus, it will produce little deformation in the massive rock. Under these circunstances the material will have an elastic behavior with very little hysteretical effect. The dinamic modulus will be at least 10 times higher than that indicated for Ei and the damping ratio will probably be less than that for dry sands and gravel, that is < 0.03.

In the case of location at boring N°5 and should a need to install a foundation on sand or residual arise, the designer will be forced to use soild geotechnical parameters. Considering the conditions found at the site, the following geotechnical parameters are suggested.

Table 7

Geotechnical Parameters for Sand at Location of Boring Nº5

Index Properties

Total Unit Weight	=	1.75	Ton/m ³
Natural Moisture Content	=	7	%
Dry Unit Weight	=	1.6	Ton/m ³
Specific Gravity	=	2.5	
Grain Size Distribution as Show in Figure 1			

Strenght and Deformation Properties

Friction Angle (°)	=	30	
c-Intercept	=	0	
Elastic Module	=	7-10	kPa

6. RECOMMENDATIONS

As presented in this Report, a total of six sites were investigated. The results show that the upper horizon of broken to very broken changes in deph with location, thus making difficult to extrapolate the data to locations not explored. None-the-less the depth to massive rock is not high, varying from 1.6 m at Boring N°1 to 7.0 m at Boring N°6 (Boring N°5 not included). Considering that it has been suggested that a minimum excavation of 2 m be developed for the projected foundations, in most places the bottom of the foundations will occur close to or at the massive rock horizon.

This Consultant understands that the antenna arrays have not been defined yet. Thus, a number of other foundation locations will need to be investigated. An efficient mean to define the depth to the massive rock at locations other than the boring ones is ussing geophysical methods such as seismic refraction in combination with the results from this and previous studies. A low energy refraction method is recommended since the background noise in the area is very low and investigations being conducted by various research entities would require to produce the least interference possible.

With the results from the geophysical investigation, trouble spots can be detected and a new drilling campaing can be defined, if neccesary. Also, other geotechnical methods, such as plate loading test, can be applied at difficult locations if the defined array so requires.

7. REFERENCES

The following documents have been considered when developing this Report:

- 1. Topographical Map of CONICYT Science Preserve, National Radio Astronomy Observatory, 11.02.99
- MMA Memo 253, Large Southern Array, Feasibility Study for a 12 m Submillimeter Antenna, Torben Andersen, European Southern Observatory, September 1997
- El Proyecto Astronómico MMA, Descripción y Estado de Avance, NRAO, Agosto 1997
- El Gran Arreglo Austral, Un Proyecto Internacional de Radioastronomía para Abrir Nuevas Ventanas en el Universo, Observatorio Europeo Austral, Julio 1998
- MMA Memo 259, A 12 m Telescope for the MMA-LSA Project, D. Plathner, IRAM, March 1999
- Carta Geológica de Chile N°58, Hoja Calama, Región de Atacama (1:250.000), Nicolás Marinovic y Alfredo Lahsen, Servicio Nacional de , 1984
- Geología de los Cuadrángulos Putana, Licancabur, Cerro de Guayaques y Aiquina, Hoja Calama, Alfredo Lahsen, Convenio Universidad de Chile-Servicio Nacional de Geología y Minería
- The Rock Mass Rating (RMR) System (Geomecanics Classification) in Engineering Practice, Z.T, Bieniawski, in Rock Classification Systems for Engineering Purposes, ASTM STP 984, 1988
- 9. Underground Excavations in Rock, E. Hoeck and E.T. Brown, The Institution of Mining and Metallurgy, London 1980

APPENDIX

BORING LOGS AND CORE PHOTOGRAPHS

NRO GEOTECHNICAL INVESTIGATION

BORING Nº1

- COORDINATES : N: 0633650
- E: 7460200
- IDENTIFICATION : Pampa La Bola
- LOCATION : Pampa La Bola, closest to international road
- MATERIAL : Ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 1.6	92.5	29	20 cm of soil on top
1.6 - 2.4	96	79	
2.4 - 4.0	97.5	97	One piece
4.0 - 5.6	97.5	87	Three pieces
5.6 - 7.2	96	89	Hard rock @ 6.4 (length is 10 cm). Very fractured 6.40-6.45 m
7.2 - 8.8	89	89	One piece
8.8 - 10.4	96	91	One piece
10.4 - 12.0	96	96	One piece
12.0 - 13.6	95	95	One piece
13.6 - 15.2	99	99	One piece

Boring Nº1 Box Nº1 Depth 0.0 – 3.0 m

Boring Nº1 Box Nº2 Depth 3.0 – 6.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-3

Boring Nº1 Box Nº3 Depth 6.0 – 9.0 m

12.0

Boring Nº1 Box Nº4 Depth 9.0 – 12.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-4

Geotechnical Study Chajnantor Site, II Región

Boring Nº1 Box Nº5 Depth 9.0 – 12.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs Geotechnical Study Chajnantor Site, II Región

NRO GEOTECHNICAL INVESTIGATION

BORING Nº2

- COORDINATES : N: 0632940 E: 7459040
- IDENTIFICATION : Pampa La Bola
- LOCATION : Pampa La Bola, closest to international road

MATERIAL : Ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 0.15	-	-	Soil
0.15 - 2.4	35	0	Very fractured
2.4 - 3.6	-	-	Silty-like material. Fault?
3.6 - 4.1	100	100	
4.1 - 5.5	96	36	
5.5 - 7.0	90	53	
7.0 - 8.6	100	31	
8.6 - 10.1	93	77	
10.1 - 11.6	87	53	
11.6 - 13.1	100	100	
13.1 - 14.7	100	94	
14.7 - 15.3	100	83	

Boring N°2 Box N°1 Depth : 0.0 – 3.0 m

6.0

Boring N°2 Box N°2 Depth : 3.0 – 6.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-7

Geotechnical Study Chajnantor Site, II Región

Boring N°2 Box N°3 Depth : 6.0 – 8.8 m

12.0

Boring Nº2 Box Nº4 Depth : 8.8 – 12.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-8

Geotechnical Study Chajnantor Site, II Región

Boring N°2 Box N°5 Depth : 12.0 – 14.6 m

Boring N°2 Box N°6 Depth : 14.6 – 15.2 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-9

Geotechnical Study Chajnantor Site, II Región

14.6

12.0

14.6

NRO GEOTECHNICAL INVESTIGATION

BORING N°3

- COORDINATES : N: 7454050
- E: 0627410
- IDENTIFICATION : Chajnantor North
- LOCATION : Pampa Agua Amarga, closest to Eso camp
- MATERIAL : Ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 2.0	43	0	Very fractured
2.0 - 3.0	76	76	One piece
3.0 - 4.6	99	95	One piece
4.6 - 6.2	99	99	One piece
6.2 - 7.8	99	98	One piece
7.8 - 9.4	95	89	One piece
9.4 - 11.0	100	100	One piece
11.0 - 12.6	91	82	Longitudinal fracture (50 cm)
12.6 - 14.2	100	89	
14.2 - 15.2	100	100	One piece

4.6

Depth: 0.0 – 4.6 m

7.8

Boring N°3 Box N°2 Depth: 4.6 – 7.8 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs

4.6

A-11

Geotechnical Study Chajnantor Site, II Región

Boring N°3 Box N°3 Depth: 7.8 – 10.0 m

13.1

10.0

Boring N°3 Box N°4 Depth : 10.0 – 13.1 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-12

Geotechnical Study Chajnantor Site, II Región

Boring N°3 Box N°5 Depth : 13.1 – 15.3 m

13.1

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs Geotechnical Study Chajnantor Site, II Región

NRO GEOTECHNICAL INVESTIGATION

BORING Nº4

- COORDINATES : N: 7452850 E: 0627610
- IDENTIFICATION : Chajnantor South
- LOCATION : Pampa Agua Amarga, across road from Caltech camp

MATERIAL : Ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 1.5	70	0	Very fractured
1.5 - 3.0	97.5	81	Long lower piece (1 m)
3.0 - 4.0	70	67	
4.0 - 5.5	86	79	
5.5 - 7.5	-	-	Lost sample in hole
7.5 - 8.05	89	42	Overall value for 5.5 to 8.05
8.05 - 9.55	91	91	
9.55 - 11.0	100	100	One piece
11.0 - 12.5	97	97	One piece
12.5 - 14.0	100	100	One piece
14.0 - 15.0	100	100	One piece

Boring Nº4 Box Nº1 Depth: 0.0 – 3.5 m

6.0

Depth: 3.5 – 6.0 m

National Radio Astronomy Observatory NRO -NRAO Report Geo 99/37 Boring Logs and Core Photographs A-15

Geotechnical Study Chajnantor Site, II Región

Boring N°4 Box N°3 Depth : 6.0 – 9.0 m

Boring Nº4 Box Nº4 Depth : 9.0 – 13.0 m

National Radio Astronomy Observatory NRO -NRAO Report Geo 99/37 Boring Logs and Core Photographs A-16

Geotechnical Study Chajnantor Site, II Región

13.0

6.0

13.0

Boring N°4 Box N°5 Depth : 13.0 – 15.0 m

National Radio Astronomy Observatory NRO -NRAO Report Geo 99/37 Boring Logs and Core Photographs

A-17

Geotechnical Study Chajnantor Site, II Región

NRO GEOTECHNICAL INVESTIGATION

BORING Nº5

COORDINATES:N:7455850E:0631250IDENTIFICATION:Saddle PointLOCATION:Next to meteorological stationMATERIAL:Sand (product of ignimbrite meteorization) over ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 13.5	-	-	Sand. Casing needed
13.5 - 15.0	43	0	Very broken
15.0 - 16.6	69	63	Pieces up to 40 cm long

Note: A trench was excavated to depth 1.50 m and unit weight tests performed. Also, grain size distribution and specific gravity tests were performed in the laboratory. The sand is loose to medium density.

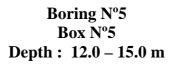
Boring N°5 Box N°1 Depth : 0.0 – 3.0 m

Boring N°5 Box N°2 Depth : 3.0 –6.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-19

Geotechnical Study Chajnantor Site, II Región

Depth: 6.0 – 9.0 m



Boring N°5 Box N°4 Depth : 9.0 – 12.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-20

Geotechnical Study Chajnantor Site, II Región

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-21

Geotechnical Study Chajnantor Site, II Región

NRO GEOTECHNICAL INVESTIGATION

BORING Nº6

COORDINATES : N: 7457280

E:

- IDENTIFICATION : Chascón East
- LOCATION : Next to meteorological station on far North-East side of site

0637710

MATERIAL : Ignimbrite

DEPTH (m)	RECOVERY (%)	RQD (%)	OBSERVATIONS
0.0 - 1.5	-	-	Sand
1.5 - 3.0	-	-	Sand
3.0 - 4.5	-	-	Sand
4.5 - 6.0	-	-	20 cm of rock at bottom. Very fractured
6.0 - 7.5	53	27	
7.5 - 9.0	93	53	
9.0 - 10.5	93	60	
10.5 - 12.0	100	80	
12.0 - 13.5	100	93	
13.5 - 15.0	100	100	One piece

Depth: 0.0 – 7.5 m

10.1

Depth: 7.5 – 10.1 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-23

Boring N°6 Box N°3 Depth : 10.1 – 13.0 m

Boring N°6 Box N°4 Depth: 13.0 – 15.0 m

National Radio Astronomy Observatory NRO - NRAO Report Geo 99/37 Boring Logs and Core Photographs A-24

Geotechnical Study Chajnantor Site, II Región