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Abstract

Accurate amplitude calibration at millimeter and submillimeter wavelengths is a difficult
goal to achieve due to the temporal variability of the emissive and absorptive properties of
the Earth’s atmosphere and the lack of an accurate astronomical flux standard. The diffi-
culties with deriving a uniform amplitude calibration system has resulted in the three step
calibration process used at millimeter and submillimeter single dishes and interferometers.
The second step in this process involves the chopper wheel calibration technique. Chopper
wheel calibration is used to derive the antenna temperature of an astronomical source cor-
rected for atmospheric extinction. An analysis of the uncertainties in three variants of this
technique, two which use a single calibrated load and a third which uses two calibrated
loads, has been derived. The conclusion of this analysis is that the one-load chopper cali-
bration systems are more uncertain than the two-load chopper calibration system. This is
especially true at submillimeter wavelengths. The main reason for the larger uncertainty
of the one-load chopper calibration systems is the fact that they require a knowledge of
the mean atmospheric temperature, which is inherently difficult to obtain. Of the two cal-
ibration systems, the two-load chopper system has the potential for reaching a calibration
accuracy of approximately 1% for all bands, as specified for the ALMA receiving systems.



1 Introduction

Over the last 30 years considerable effort has been devoted to the development of an
absolute calibration technique for millimeter astronomical measurements. The three most
significant problems which one must overcome when calibrating the amplitude of millimeter
astronomical measurements are:

• Implementation of a stable total power system;

• The variable attenuation of millimeter signals due to the Earth’s atmosphere. This
opacity is due primarily to the combined absorptive and emissive effects of O2 and
H2O;

• The lack of an appropriate astronomical amplitude calibration source.

In the following, we describe the amplitude calibration scheme used at millimeter and
submillimeter wavelengths and address the needs for accurate amplitude calibration for
ALMA. In this analysis, we consider most sources of uncertainty except uncertainty due
to:

• pointing errors,

• variations in the antenna beam pattern with time and elevation,

• loss of correlation due to atmospheric or instrumental phase noise, and

• gain compression in the SIS mixer or amplifiers.

2 The Amplitude Calibration Ladder

A graphical description of the “calibration ladder” used at millimeter and submillimeter
wavelengths is shown in Figure 1. The uncertainties associated with each step of the
ladder are typical of the current calibration systems used at existing millimeter wavelength
observatories. The target uncertainties for amplitude calibration with ALMA are listed in
parentheses for each step.

The first step of the amplitude calibration ladder is the easiest of the three steps to
derive. Good gain stability, to a level of at least 1% over time scales less than approximately
10 seconds, are relatively easy to maintain with well-built receiving systems. The gain
stability specification for ALMA is 10−4 over time scales ≤1 second.

The second step in this amplitude calibration ladder, the calibration of the telescope-
dependent amplitude scale, is an inherently difficult task to accomplish. For most as-
tronomical measurements this calibration step is accomplished through the measurement
of a noise source of known emissive properties. At centimeter wavelengths the common
noise source used for calibration is a waveguide oscillator or diode which emits a broad-
band noise source directly into the radio receiver. At shorter wavelengths, noise tube or
diode calibration sources become problematic to use due to their frequency-, time-, and
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Figure 1: Graphical representation of the “calibration ladder” used at millimeter and
submillimeter wavelengths. The current state of the art for determining each step of the
ladder is indicated, along with the ALMA requirements for each in parentheses. The
chopper wheel calibration technique is used to determine the second step in this ladder.
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polarization-dependent output characteristics. The difficulties encountered in applying
noise tube calibration to millimeter astronomical measurements lead Penzias & Burrus
(1973) to develop the chopper wheel calibration technique. In this technique, the response
of the receiver is calibrated by alternately introducing and removing black body absorbers
of known or estimated physical temperature at a convenient point in the signal path of
the receiver. The calibrating noise signal is then the difference between the temperatures
of these absorbers. The broad band and frequency independent emissive properties of the
absorbers, coupled with the simplicity and reliability of this technique, has resulted in its
adoption as the main calibration system used at most radio observatories which operate
at millimeter wavelengths.

The chopper wheel calibration technique allows for the conversion of measured voltages
at the receiver to an antenna temperature corrected for the time- and position-variable
emissive properties of the Earth’s atmosphere. In the following, we investigate the accuracy
of three forms of the chopper wheel calibration technique when applied to observations at
millimeter and submillimeter wavelengths. Definitions for the terms used in this analysis
can be found in Appendix A.

3 Terms Used in the T∗A Temperature Scale

The received signals from the sky, load, and source measurements are given by

Vsky = K
(
GsJ

s
sky +GiJ

i
sky + Trx

)
+ Voffset

= K
[
Gs

(
Jssky−cold + Jssky−hot + Jsant + ηlJ

s
bg exp(−τs)

)
+

Gi

(
J isky−cold + J isky−hot + J iant + ηlJ

i
bg exp(−τi)

)
+ Trx

]
+ Voffset

= K
[
Gs

[
ηlJ

s
m (1− exp(−τs)) + (1− ηl) Jsspill + ηlJ

s
bg exp(−τs)

]
+

Gi

(
ηlJ

i
m [1− exp(−τi)] + (1− ηl) J ispill + ηlJ

i
bg exp(−τi)

)
+ Trx

]
+ Voffset (1)

Vload = Kf
[
GsJ

s
load +GiJ

i
load

]
+KTrx + Voffset (2)

Vsource = K
[
GsJ

s
A−sky +GiJ

i
A−sky + TA(source) + Trx

]
+ Voffset

= K
[
GsJ

s
A−sky +GiJ

i
A−sky + ηl [T

∗
AsGs exp(−τs) + T ∗AiGi exp(−τi)] + Trx

]
+Voffset (3)

Note that Equation 1 is equivalent to Equation 3 in Ulich & Haas (1976). Using the
definitions for Vsky (Equation 1), Vload (Equation 2), and Vsource (Equation 3), and noting
that

Vsource − Vsky = Kηl [T
∗
AsGs exp(−τs) + T ∗AiGi exp(−τi)] (4)
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we can assume that the signal to be observed exists only in the signal sideband (so that
T ∗As = T ∗A) to derive the standard equation for T ∗A

T ∗A =
Vsource − Vsky
KGsηl exp(−τs)

(5)

A common calibration factor used to quantify millimeter and submillimeter measure-
ments acquired with both single dish and interferometric techniques is the system temper-
ature Tsys, which is defined as

Tsys ≡
Vsky

Vsource − Vsky
(T ∗As + T ∗Ai) (6)

Using Equations 1, 3, and 5, Equation 6 becomes

Tsys =
GsJ

s
A−sky +GiJ

i
A−sky + Trx

ηl [T ∗AsGs exp(−τs) + T ∗AiGi exp(−τi)]
[T ∗As + T ∗Ai] (7)

If we are only interested in signals which come from the signal sideband, then T ∗Ai = 0.
Therefore, with T ∗As = T ∗A, Equation 7 becomes

Tsys =
JsA−sky + Trx

Gsηl exp(−τs)
(8)

Note that Equation 8 requires a measurement of Trx, which is derived from sequential
measurements of two calibrated loads at known temperatures Tload1 and Tload2

Trx =
Jload1Vload2 − Jload2Vload1

Vload1 − Vload2

=
Jload1 − Y Jload2

Y − 1
(9)

where Y ≡ Vload1
Vload2

.

4 Derivation and Calibration of the T∗A Temperature

Scale

Proper scaling of the T ∗A and Tsys temperatures in millimeter and submillimeter single
dish and interferometric observations requires the measurement of calibrated loads. The
traditional mode for deriving and calibrating the T ∗A and Tsys temperature scales at mil-
limeter wavelengths is the “chopper wheel” technique (Penzias & Burrus 1973; Ulich &
Haas 1976). In the chopper wheel calibration system, the response of the receiver to one
or two calibrated loads is combined with a measurement of the emission due to the sky
to derive T ∗A and Tsys. In both flavours of the chopper wheel calibration technique, it is
assumed that Gs and ηl are known. In the following, we will discuss the three variants of
the chopper wheel calibration technique.
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4.1 Generalized Two–Load Chopper Wheel

The most direct way to measure T ∗A and Tsys is to use the two–load chopper wheel calibra-
tion technique. As one can see by examining Equations 5, 8, and 9, two calibrated loads
are required to directly measure K in Equation 5, and TA(sky) and Trx in Equation 8.

A direct measure of K is derived by noting that

(Vload1 − Voffset)
K

= f1

[
GsJ

s
load1 +GiJ

i
load1

]
+ Trx (10)

(Vload2 − Voffset)
K

= f2

[
GsJ

s
load2 +GiJ

i
load2

]
+ Trx (11)

Taking the difference of these two equations and solving for K yields

K =
Vload1 − Vload2

f1

[
GsJsload1 +GiJ iload1

]
− f2

[
GsJsload2 +GiJ iload2

] (12)

so that

(T ∗A)two−load =

(
Vsource − Vsky
Vload1 − Vload2

){
f1

[
Jsload1 +RiJ

i
load1

]
− f2

[
Jsload2 +RiJ

i
load2

]
ηl exp(−τs)

}
(13)

The main shortcoming of the two-load chopper wheel technique is that a measurement
of the atmospheric opacity in the signal sideband at the elevation of the source, τs, is
required. This measurement is usually gotten by making a tipping scan in the direction of
the source.

4.2 One–Load Chopper Wheel (Traditional Chopper Wheel)

The one-load chopper wheel technique is the simplest to implement as it requires only a
chopping vane placed over the feed of the receiver. Its main shortcoming is that a model
of the emission due to the sky must be used to derive T ∗A and Tsys. In the following, we
will derive the dependence of T ∗A on the various measurable terms in a one-load chopper
wheel system.

Starting with Equation 13 and substituting

Vload1 = Vload

Vload2 = Vsky

Tload1 = Tload

Tload2 = TA(sky)

f1 = f

f2 = f

Γ ≡ Vsource − Vsky
Vload1 − Vload2
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we find that

(T ∗A)one−load =
Γf

ηl exp(−τs)

[
Jsload − Jsmηl [1− exp(−τs)]− (1− ηl) Jsspill−

ηlJ
s
bg exp(−τs) +Ri

[
J iload − J imηl [1− exp(−τi)]− (1− ηl) J ispill−

ηlJ
i
bg exp(−τi)

]] (14)

Note that for Tm ' Tspill ' Tload and τs ' τi, Equation 14 is independent of τ .
A common quantity used at millimeter and submillimeter observatories which use the

one-load chopper wheel technique is the “calibration temperature” Tc. In Equation 14 Tc
is given by

T ∗A
Γ

.

4.3 One–Load Chopper Wheel (Semi-Transparent Vane)

A variant of the traditional chopper wheel technique uses a chopping vane which is semi-
transparent at millimeter and submillimeter wavelengths. Note that this variant of the
one-load chopper wheel technique is also dependent on a model of the emission due to the
atmosphere.

Starting with Equation 5 and substituting

Vload1 = Vload

Vload2 = Vsky

Tload1 = Tload

Tload2 = TA(sky)

f1 = f

f2 = 1− f

Γ ≡ Vsource − Vsky
Vload1 − Vload2

we find that

(T ∗A)one−loadsemi−trans =
Γf

ηl exp(−τs)

[
Jsload +RiJ

i
load −

(
1− f
f

)[
ηlJ

s
m [1− exp(−τs)] +

(1− ηl) Jsspill + ηlJ
s
bg exp(−τs) +Ri

[
ηlJ

i
m [1− exp(−τi)] +

(1− ηl) J ispill + ηlJ
i
bg exp(−τi)

]]] (15)

Note that Equation 15 is equal to Equation 14 with Jload = fJload, Jspill = (1 − f)Jspill,
Jm = (1− f)Jm, Jbg = (1− f)Jbg.
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5 Variance of the T∗A Scale

5.1 Generalized Two–Load Chopper Wheel

In the following, we assume that Vload1, Vload2, Vsource, and Vsky can be measured exactly. We
then calculate the variance of (T ∗A)two−load (Equation 13) with respect to the free variables
Jsload1, Jsload2, J iload1, J iload2, Ri, ηl, τs, f1, and f2.

σ2(T ∗A)two−load = σ2(Tload1)

(
∂(T ∗A)two−load

∂Tload1

)2

+ σ2(Tload2)

(
∂(T ∗A)two−load

∂Tload2

)2

+

σ2(Ri)

(
∂(T ∗A)two−load

∂Ri

)2

+ σ2(ηl)

(
∂(T ∗A)two−load

∂ηl

)2

+

σ2(f1)

(
∂(T ∗A)two−load

∂f1

)2

+ σ2(f2)

(
∂(T ∗A)two−load

∂f2

)2

+

σ2(τs)

(
∂(T ∗A)two−load

∂τs

)2

(16)

Using the partial derivatives of Equation 13 calculated in Appendix B, we find that

(
σ(T ∗A)two−load

(T ∗A)two−load

)2

= σ2(Tload1)

[(
f1

α

)(
(Jsload1)′ +Ri(J

i
load1)′

)]2

+

σ2(Tload2)

[(
f2

α

)(
(Jsload2)′ +Ri(J

i
load2)′

)]2

+

σ2(ηl)

η2
l

+ σ2(τs) +

σ2(Ri)

(
f1J

i
load1 − f2J

i
load2

α

)2

+

σ2(f1)

(
Jsload1 +RiJ

i
load1

α

)2

+

σ2(f2)

(
Jsload2 +RiJ

i
load2

α

)2

(17)

5.2 One–Load Chopper Wheel (Traditional Chopper Wheel)

In the following, we assume that Vsource, Vsky, Vload, and Tbg can be measured exactly. We
can now calculate the variance of (T ∗A)one−load with respect to the free variables Jsm, J im,
Jsload, J

i
load, J

s
spill, J

i
spill, Ri, ηl, τs, and τi

7



σ2(T ∗A)one−load = σ2(Tm)

(
∂(T ∗A)one−load

∂Tm

)2

+ σ2(Tload)

(
∂(T ∗A)one−load

∂Tload

)2

+

σ2(Tspill)

(
∂(T ∗A)one−load

∂Tspill

)2

+ σ2(Ri)

(
∂(T ∗A)one−load

∂Ri

)2

+

σ2(ηl)

(
∂(T ∗A)one−load

∂ηl

)2

+ σ2(τs)

(
∂(T ∗A)one−load

∂τs

)2

+

σ2(τi)

(
∂(T ∗A)one−load

∂τi

)2

(18)

Using the partial derivatives of Equation 14 calculated in Appendix C, we find that

(
σ(T ∗A)one−load

(T ∗A)one−load

)2

= σ2(Tm)

{
ηl
γ

[
(Jsm)′ [exp(−τs)− 1] +Ri(J

i
m)′ [exp(−τi)− 1]

]}2

+

σ2(Tload)

{(
1

γ

)(
(Jsload)

′ +Ri(J
i
load)

′)}2

+

σ2(Tspill)

{(
ηl − 1

γ

)(
(Jsspill)

′ +Ri(J
i
spill)

′)}2

+

σ2(Ri)

[
J iload − J imηl

[
1− exp(−τi)

]
− (1− ηl)J ispill − ηlJ ibg exp(−τi)
γ

]2

+

σ2(ηl)

{
1

ηl
+

1

γ

[
Jsm [1− exp(−τs)]− Jsspill + Jsbg exp(−τs) +

Ri

(
J im [1− exp(−τi)]− J ispill + J ibg exp(−τi)

)]}2

+

σ2(τs)

[
1 +

ηl
γ

(
Jsm − Jsbg

)
exp(−τs)

]2

+

σ2(τi)

[
Riηl
γ

(
J ibg − J im

)
exp(−τi)

]2

(19)

5.3 One–Load Chopper Wheel (Semi-Transparent Vane)

As was done in §5.2, we assume that Vsource, Vsky, Vload, and Tbg can be measured exactly.
We can now calculate the variance of (T ∗A)one−loadsemi−trans with respect to the free variables Jsm,
J im, Jsload, J

i
load, J

s
spill, J

i
spill, Ri, ηl, τs, τi, and f . Since (T ∗A)one−loadsemi−trans differs from (T ∗A)one−load

only by an extra term involving f , inspection of Equations 14 and 15 reveals that
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(
σ(T ∗A)one−loadsemi−trans

(T ∗A)one−loadsemi−trans

)2

=

(
σ(T ∗A)one−load

(T ∗A)one−load

)2

+
σ2(f)

f 2
(20)

6 Comparative Uncertainty of the One- and Two-

Load Chopper Wheel Calibration Techniques

In Table 1 we have listed values for each term in the variance relations
(
σ(T ∗A)one−load

(T ∗A)one−load

)
(Equation 19),

(
σ(T ∗A)one−loadsemi−trans
(T ∗A)one−loadsemi−trans

)
(Equation 20), and

(
σ(T ∗A)two−load

(T ∗A)two−load

)
(Equation 17). For

these calculations we assumed

– A zenith atmospheric opacity at each frequency based on atmospheric model calcu-
lations assuming 1mm PWV on the Chajnantor site;

– That the elevation of observation was 45◦;

– Double sideband receiver systems;

– Mean atmospheric temperature measurement accuracy of 2% (best) and 10% (worst).
The best-case value of 2% is based on an analysis of the ATM code by Cernicharo
(private communication).

– Load temperatures and regulation accuracy for the two-load calibration system char-
acteristic of those used in the BIMA prime focus calibration system. In that system,
there are two temperature-regulated loads at 310 K and 400 K which couple to the
receiver feed with an efficiency of about 2%. The accuracy of the absolute temper-
ature regulation for both loads is dominated by the accuracy of the temperature
sensor, which is 0.1 K (∼0.05%) (Welch, private communication).

– Equal signal and image sideband atmospheric opacities and uncertainties.

– Load coupling factor uncertainties of 0.1% (best) and 1% (worst).

– Load temperature regulation of 1% (best) and 2% (worst).

Five calculations are shown for each frequency, representing (1) best-case conditions,
(2) uncertain Tm, (3) uncertain load temperatures, (4) uncertain atmospheric opacities,
and (5) uncertain load coupling factors. Plots of the contributions of each error term
to the total uncertainty are shown in Figures 2 and 3 (note that the uncertainties are
essentially the same at 490 and 650 GHz). The conclusions from these comparisons are:

1. The most optimistic conditions lead to uncertainties of approximately 1% for the one-
and two-load chopper calibration systems. The 1% uncertainty value is consistent
with the results of the BIMA prime focus two-load calibration system (see Welch
et. al. 2000).

9



2. All load calibration techniques are affected equally by the uncertainty in ηl. This is
historically tied to the fact that the chopper wheel calibration scheme was developed
for prime focus receiving systems.

3. At higher frequencies, the uncertainty in the mean atmospheric temperature and
the atmospheric opacity dominate the overall uncertainty of the one-load chopper
calibration technique. Atmospheric opacity should be measured to an accuracy of at
least 1% to obtain <2% overall uncertainty with the two-load calibration system.

4. Accurate knowledge of the relative sideband gain (Ri) is extremely important. For
example, if σ(Ri) = 10% rather than the standard value of 1%, the best-case uncer-
tainty in the one- and two-load chopper calibration techniques becomes 5% at 230
GHz.

7 Conclusions

1. A two-load chopper wheel calibration system is necessary to have the potential of
achieving 1% calibration uncertainty of the T ∗A temperature scale. The main draw-
back of the two-load calibration system is the need for an independent measurement
of the atmospheric opacity τ . This measurement can be derived from a tipping scan
or from a dedicated opacity monitor such as a Fourier transform spectrometer sys-
tem (at each antenna) which monitors the atmospheric opacity continuously at all
frequencies.
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A Definitions

Planck Equation: Note that the equivalent Rayleigh-Jeans temperature of the point
on the Planck blackbody curve corresponding to the frequency ν, and its derivative with
respect to temperature, are given by

JνsbT =
hνsb
k

exp
(
hνsb
kT

)
− 1

(21)

(JνsbT )′ =
∂JνsbT

∂T

=

(
hνsb
kT

)2 exp
(
hνsb
kT

)[
exp

(
hνsb
kT

)
− 1
]2 (22)

Temperatures

Trx is the receiver DSB noise temperature;

Tload (Jload) is the temperature of a calibration load;

Tm (Jm) is the mean atmospheric temperature;

Tspill (Jspill) is the spillover temperature;

Tbg (Jbg) is the cosmic background temperature;

T coldsky (Jsky−cold) = ηlηfssTm
[
1 − exp(−τ)

]
is the temperature due to sky emission

which terminates to cold sky;

T hotsky (Jsky−hot) = ηl(1−ηfss)Tm
[
1−exp(−τ)

]
is the temperature due to sky emission

which terminates to ground;

Tant (Jant) = (1− ηl)Tspill is the temperature of the antenna;

TA(sky) (JA−sky) = T coldsky + T hotsky + Tant + ηlTbg exp(−τ) = ηlTm
[
1− exp(−τ)

]
+ (1−

ηl)Tspill + ηlTbg exp(−τ) is the antenna temperature due to sky emission in the
signal or image sideband;

TA(source) is the antenna temperature due to source emission;

Other

νs is the sky frequency in the signal sideband;

νi is the sky frequency in the image sideband;

ηl is the rear spillover, blockage, scattering, and ohmic efficiency;

ηfss is the forward spillover efficiency;

τs is the atmospheric optical depth in the signal sideband;

τi is the atmospheric optical depth in the image sideband;

14



Gs is the receiver gain in the signal sideband;

Gi is the receiver gain in the image sideband;

Ri ≡ Gi
Gs

;

K is the proportionality constant between total power voltage and equivalent tem-
perature;

V is the measured voltage from the receiver, which is proportional to the equivalent
temperature of the measurement (T) given by the Planck equation;

Voffset is the measured DC offset voltage;

f is the fraction of the receiver beam filled by a load.
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B Generalized Two–Load Chopper Wheel Partial Deriva-

tives

α ≡ f1

[
Jsload1 +RiJ

i
load1

]
− f2

[
Jsload2 +RiJ

i
load2

]
(23)

∂(T ∗A)two−load

∂Tload1

=
∂(T ∗A)two−load

∂Jsload1

∂Jsload1

∂Tload1

+
∂(T ∗A)two−load

∂J iload1

∂J iload1

∂Tload1

=
f1

α

(
(Jsload1)′ +Ri(J

i
load1)′

)
(T ∗A)two−load (24)

∂(T ∗A)two−load

∂Tload2

=
∂(T ∗A)two−load

∂Jsload2

∂Jsload2

∂Tload2

+
∂(T ∗A)two−load

∂J iload2

∂J iload2

∂Tload2

= −f2

α

(
(Jsload2)′ +Ri(J

i
load2)′

)
(T ∗A)two−load (25)

∂(T ∗A)two−load

∂ηl
= −(T ∗A)two−load

ηl
(26)

∂(T ∗A)two−load

∂τs
= (T ∗A)two−load (27)

∂(T ∗A)two−load

∂Ri

=

[
f1J

i
load1 − f2J

i
load2

]
(T ∗A)two−load

α
(28)

∂(T ∗A)two−load

∂f1

=

[
Jsload1 +RiJ

i
load1

]
(T ∗A)two−load

α
(29)

∂(T ∗A)two−load

∂f2

= −
[
Jsload2 +RiJ

i
load2

]
(T ∗A)two−load

α
(30)
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C One–Load Chopper Wheel Partial Derivatives

γ ≡ Jsload − Jsmηl [1− exp(−τs)]− (1− ηl) Jsspill − ηlJsbg exp(−τs) +

Ri

[
J iload − J imηl [1− exp(−τi)]− (1− ηl) J ispill − ηlJ ibg exp(−τi)

]
(31)

∂(T ∗A)one−load

∂Tm
=

∂(T ∗A)one−load

∂Jsm

∂Jsm
∂Tm

+
∂(T ∗A)one−load

∂J im

∂J im
∂Tm

=
ηl
γ

[
[exp(−τs)− 1] (Jsm)′ +Ri(J

i
m)′ [exp(−τi)− 1]

]
(T ∗A)one−load (32)

∂(T ∗A)one−load

∂Tload
=

∂(T ∗A)one−load

∂Jsload

∂Jsload
∂Tload

+
∂(T ∗A)one−load

∂J iload

∂J iload
∂Tload

=
(Jsload)

′ +Ri(J
i
load)

′

γ
(T ∗A)one−load (33)

∂(T ∗A)one−load

∂Tspill
=

∂(T ∗A)one−load

∂Jsspill

∂Jsspill
∂Tspill

+
∂(T ∗A)one−load

∂J ispill

∂J ispill
∂Tspill

=
(ηl − 1)

γ

(
(Jsspill)

′ +Ri(J
i
spill)

′) (T ∗A)one−load (34)

∂(T ∗A)one−load

∂ηl
= −(T ∗A)one−load

[
1

ηl
+

1

γ

[
Jsm [1− exp(−τs)]− Jsspill + Jsbg exp(−τs) +

Ri

[
J im [1− exp(−τi)]− J ispill + J ibg exp(−τi)

]]]
(35)

∂(T ∗A)one−load

∂τs
= (T ∗A)one−load

[
1 +

ηl
γ

(
Jsm − Jsbg

)
exp(−τs)

]
(36)

∂(T ∗A)one−load

∂τi
=

(T ∗A)one−loadRiηl
γ

(J ibg − J im) exp(−τi) (37)

∂(T ∗A)one−load

∂Ri

=
(T ∗A)one−load

γ

[
J iload − J imηl

[
1− exp(−τi)

]
− (1− ηl)J ispill −

ηlJ
i
bg exp(−τi)

]
(38)
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D Temperature Scales and Telescope Efficiencies

The calibration mode used for essentially all spectral line observations at most millimeter
and submillimeter observatories is the chopper wheel method (see Ulich & Haas 1976).
The chopper wheel technique corrects for atmospheric attenuation and several telescope
losses. In the following, I describe a variety of temperature scales used at many millimeter
and submillimeter observatories.

D.1 Definitions

In the following I define the terms used in the subsequent temperature scale and telescope
efficiency discussion. I have tried to adopt a similar nomenclature to that used in Kutner
& Ulich (1981). Note that throughout this discussion when I refer to a “temperature” I am
actually referring to the effective source radiation temperature J(ν, T ), which is defined
by Equation 21.

General Terms

Ωs ≡ Solid angle subtended by the source

Ωd ≡ Solid angle subtended by the central diffraction beam pattern of the telescope

Ω ≡ Solid angle on the sky

Ψ ≡ Direction angle on the sky

Pn ≡ Normalized antenna power pattern

Png ≡ Normalized Gaussian antenna power pattern

Bn ≡ Normalized source brightness distribution

A ≡ Airmass toward which the measurement is made

τ0 ≡ Atmospheric optical depth at the zenith

G ≡ Maximum antenna gain

Efficiencies

18



ηr ≡ Radiative efficiency

≡ G

4π

∫∫
4π

Pn(Ω)dΩ (39)

ηrss ≡ Rearward scattering and spillover efficiency

≡
∫∫

2π
Pn(Ω)dΩ∫∫

4π
Pn(Ω)dΩ

(40)

ηl ≡ ηrηrss (41)

ηfss ≡ Forward scattering and spillover efficiency

≡
∫∫

Ωd
Pn(Ω)dΩ∫∫

2π
Pn(Ω)dΩ

(42)

ηmb ≡ Main beam efficiency

≡
∫∫

4π
Png(Ω)dΩ∫∫

4π
Pn(Ω)dΩ

(43)

ηcmb ≡ Efficiency at which the source couples to the main diffraction beam

of the telescope

≡
∫∫

Ωs
Pn(Ψ− Ω)Bn(Ψ)dΨ∫∫

4π
Png(Ω)dΩ

(44)

ηc ≡ Efficiency at which the source couples to the telescope beam

≡ ηcmbηmb

≡
∫∫

Ωs
Pn(Ψ− Ω)Bn(Ψ)dΨ∫∫

4π
Pn(Ω)dΩ

[12pt] (45)
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Temperatures

TR ≡ Source radiation temperature

TA ≡ Observed source antenna temperature

≡ GTR
4π

exp(−Aτ0)

∫∫
Ωs

Pn(Ψ− Ω)Bn(Ψ)dΨ (46)

T ′A ≡ Observed source antenna temperature corrected for atmospheric attenuation

≡ TA exp(Aτ0) (47)

T ∗A ≡ Observed source antenna temperature corrected for atmospheric attenuation,

radiative loss, and rearward scattering and spillover

≡ T ′A
ηrηrss

(48)

T ∗R ≡ Observed source antenna temperature corrected for atmospheric attenuation,

radiative loss, and rearward and forward scattering and spillover1

≡ T ∗A
ηfss

(49)

∆TR ≡ Source radiation temperature excluding any background emission

(like the cosmic microwave background emission)

≡ TR − Tbg

≡ T ∗R
ηc

(50)

Tmb ≡ Source brightness temperature as measured by the main diffraction beam

of the telescope

≡ ηcmb∆TR (51)

D.2 Relations Between Temperature Scales

We can now combine the definitions above to derive the relations between the physical
measurements and the temperature scales used at many millimeter and submillimeter ob-
servatories. Combining the equations above, we can relate the source temperature corrected
for atmospheric attenuation (T ′A) to many of the antenna and source temperatures:

1T ∗R can also be defined as the source brightness temperature corrected for atmospheric attenuation,
radiative loss, and rearward and forward scattering and spillover if the source is equal to or larger than
the main diffraction beam.
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T ′A = ηrηrssηfssηc∆TR (52)

= ηlηfssT
∗
R (53)

= ηlT
∗
A (54)

= ηmbTmb (55)

D.3 Telescope Efficiency Measurements

Telescope efficiencies are normally calculated using a measurement of the continuum bright-
ness of a planet (for ηmb) or the Moon (for ηfss). In the following I give the relations used
to calculate several telescope efficiencies. Since the source coupling between a disk source
like the planets and a Gaussian telescope beam is given by:

ηcmb = 1− exp

[
− ln(2)

(
θs
θB

)2
]

(56)

I will use this term in the efficiency equation derivations given below.

D.3.1 Corrected Main Beam Efficiency

The efficiency factor which converts the T ∗A scale to the Tmb scale is given by:

ηm =
T ∗A
Tmb

=
T ∗A

(TR − Tbg)
{

1− exp

[
− ln(2)

(
θs
θB

)2
]} (57)

One can also calculate ηm using the Ruze equation:

ηm =

[
1 +

Aeθ
2
e

Amθ2
m

]−1

(58)

given that:

θe = 2
√

ln(2)
λ

πcσ
(59)

θm = 1.22
λ

D
(60)

Ae
Am

=
1

ηa0

[
2cσ
D

]2 [
exp(δ2)− 1

]
(61)

where λ is the wavelength of observation, cσ is the correlation scale size of the surface
deviations, ηa0 is the zero wavelength aperture efficiency, and δ is the surface accuracy.
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D.3.2 Main Beam Efficiency

The efficiency factor which converts any source antenna measurement to the Tmb scale is
given by:

ηmb =
T ′A
Tmb

=
ηlT

∗
A

(TR − Tbg)
{

1− exp

[
− ln(2)

(
θs
θB

)2
]} (62)
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