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Where Neutrons Come From
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How Neutrons Can Generate
Charged Particles in any IC
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note:  These alpha and other charged particles are being generated right in the silicon itself.
Unlike packaging induced alphas, they do not have to penetrate the top metalization. They 
can be generated right where they can do the most harm.
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Single Event Upset (SEU)
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A single high-energy particle can 
strike a critical node and leave behind
an ionized track.
If the value of this charge is high 
enough, a voltage of sufficient value
can cause a bit flip called soft error.



C-5_fabula   5

How Neutron Flux Varies
with altitude
with latitude
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How we can test for NSEU ?
For accelerated neutron testing

Testing can be done with Protons (sort of)
Mass approximates a neutron, charge effects complicate 
Proton sources are readily available (cheap)

Testing with Spallation Neutron sources
LANSCE spallation spectrum matches atmospheric neutrons
LANSCE source gives ~ 105 to 106 acceleration

Testing in nuclear reactors
reactors yield quasi mono-energetic neutron sources
calculations back to Hess spectrum are difficult

For atmospheric (applications) testing
We can use the natural radiation environment around us
Acceleration is possible only by increasing the altitude of the test
Due to low rates,  a very large number of devices are required 
Testing times can be very  long (many month to years)
Acceleration (up to 10X) is achievable by testing at altitude(s)
However, this test is the ultimate correlation for all accelerated tests
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What NSEU testing was done by Xilinx

Proton Cross Sections
Taken at Crocker (Davis) and Texas A&M
Correlation with neutron data was disappointing

Neutron Cross Sections
Taken at the LANSCE facility at Los Alamos
Evaluating contribution of energy spectrum models

Atmospheric Neutron Testing (Rosetta)
Large population of parts
Tested at three altitudes
Correlated with LANSCE results
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Why we did Rosetta ?

Effects of Terrestrial Cosmic Rays, J.F. Zeigler, United States Airforce Academy.
http://www.srim.org/SER/SERTrends.htm)
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Xilinx Rosetta Tests

Real-life, real-time atmospheric testing
Used to correlate LANSCE energy models
Used large boards with 100 XC2V6000s 

runs 24 hours a day, internet-monitored 
read back and error logging 12 times a day 
Each test contains >1.9 gigabits of config latch

Test currently is operational at 3 altitudes
At ~Sea level in San Jose 
At 5,200 feet in Albuquerque
At 12,250 feet at White Mountain Research Center
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Rosetta Test Board
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NSEU Program Flow Chart
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Comparison of Results at 150 nM

Proton Cross Section
3.40e-14 cm2   (10 to 100 MeV)

Neutron Cross Sections (LANSCE Hess Spectrum)
>1.5 MeV     1.80e-14 cm2

>10.0 MeV    3.43e-14 cm2

Neutron Cross Sections (Rosetta Data)
>1.5 MeV      5.29e-15 cm2

>10.0 MeV    3.17e-14 cm2

Voltage Altitude Flux Bits Hours >1.5MEV >1.5MEV >10MEV >10MEV Errors >1.5Mev >10Mev
Mult Flux Fluence Flux Fluence Cross Section Cross Section

1.5 sea level 1 1958546400 3246 120 389520 20 64920 4 5.243E-15 3.146E-14

1.5 5200 1.67 1958546400 8645 200 1732458 33 288743 18 5.305E-15 3.183E-14

1.5 12250 9.2 1958546400 2084 1104 2300736 184 383456 24 5.326E-15 3.196E-14

Average Sea Level Cross Section 5.291E-15 3.175E-14
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Particle Cross 
Sections by Technology

 
Family Technology Proton LANSCE Rosetta LANSCE Rosetta

10-100 MeV >1.5 MeV >1.5 MeV >10 MeV > 10 MeV

Virtex 220 nM 2.41E-14 5.50E-15 1.65E-15 1.29E-14 1.16E-14
Virtex E 180 nM 3.40E-14 7.69E-15 2.31E-15 1.45E-14 1.31E-14
Virtex II 150 nM 7.48E-14 1.80E-14 5.29E-15 3.43E-14 3.17E-14
Virtex II-Pro 130 nM 5.26E-14 1.56E-14 4.68E-15 3.44E-14 3.10E-14
Spartan 3 90 nM 3.29E-14 1.53E-14 4.59E-15 3.17E-14 2.85E-14

Proton data was taken at Crocker Nuclear Laboratories and Texas A&M
Neutron data was taken at the Los Alamos Neutron Science Center
Rosetta data was taken at San Jose, Albuquerque and White Mountain



C-5_fabula   15

   
 

  
 
 

Variation with Voltage
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beam at zero degrees

beam at 90 degrees

beam at 180 degrees

Neutron Irradiation versus
Package Angle Issues
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Theoretical Angle Dependence
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What’s the real Logic MTBF?

Analysis of many typical designs shows:
Only 1 of 10...40 config cells is used
90 to 98% are not used, 
their SEUs cause no problem whatsoever

Conservatively we can multiply 
the MTBF by a factor ten.
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Independent Confirmation

An early HI experiment by Novus Technologies on the V300 had 
indicated a logic upset multiplier of between 6 and 40
Work by BYU and LANL  indicated that the logic upset multiplier 
can be as high as 25 - 100 for specific designs in a V1000
By logical extension, the larger the FPGA the higher the multiplier 
for any given logic implementation
BYU and LANL have developed a bit flip logic impact simulator 
for the V1000 that has been verified in Proton testing
Xilinx has extensive data on PIP utilization from the many 
EasyPath applications that we are supporting
Xilinx laboratories are developing software algorithms (SEUPI) to 
identify “critical” bits which may affect user logic
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The Impact of Technology
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The Impact of Altitude
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Conclusions
Proton measurements should be used  only as an 
qualitative indicator of NSEU rates
LANSCE data can provide a good match to 
atmospheric testing with the correct energy model
ROSETTA data indicates clear support for using the 
>10.0 MeV model for current process technology
The sky is not falling as technology  continues to 
shrink below 220 nM  (Moore’s law still lives)
The neutron cross section can stabilize  as 
technology shrinks (compensating a sensitivity 
increase by a probability decrease function)
Designers can and are increasing the robustness of 
state of the art latches to NSEU effects


