

The NSEU Response of Static Latch Based FPGAs

Joseph J Fabula Austin Lesea Carl Carmichael Saar Drimer

This work has benefited from the use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the US Department of Energy under Contract W-7405-ENG-36.

Where Neutrons Come From

Schematic Diagram of Cosmic Ray Shower

How Neutrons Can Generate Charged Particles in any IC

<u>note</u>: These alpha and other charged particles are being generated right in the silicon itself. Unlike packaging induced alphas, they do not have to penetrate the top metalization. They can be generated right where they can do the most harm.

Single Event Upset (SEU)

C-5_fabula 4

How Neutron Flux Varies

with altitude with latitude

How we can test for NSEU ?

- For accelerated neutron testing
 - Testing can be done with Protons (sort of)
 - Mass approximates a neutron, charge effects complicate
 - Proton sources are readily available (cheap)
 - Testing with Spallation Neutron sources
 - LANSCE spallation spectrum matches atmospheric neutrons
 - LANSCE source gives ~ 10⁵ to 10⁶ acceleration
 - Testing in nuclear reactors
 - reactors yield quasi mono-energetic neutron sources
 - calculations back to Hess spectrum are difficult
- For atmospheric (applications) testing
 - We can use the natural radiation environment around us
 - Acceleration is possible only by increasing the altitude of the test
 - Due to low rates, a very large number of devices are required
 - Testing times can be very long (many month to years)
 - Acceleration (up to 10X) is achievable by testing at altitude(s)
 - However, this test is the <u>ultimate correlation</u> for all accelerated tests

Choice of the LANSCE Source

What NSEU testing was done by Xilinx

Proton Cross Sections

- Taken at Crocker (Davis) and Texas A&M
- Correlation with neutron data was disappointing

Neutron Cross Sections

- Taken at the LANSCE facility at Los Alamos
- Evaluating contribution of energy spectrum models
- Atmospheric Neutron Testing (Rosetta)
 - Large population of parts
 - Tested at three altitudes
 - Correlated with LANSCE results

Why we did Rosetta ?

Xilinx Rosetta Tests

- Real-life, real-time atmospheric testing
- Used to correlate LANSCE energy models
- Used large boards with 100 XC2V6000s
 - runs 24 hours a day, internet-monitored
 - read back and error logging 12 times a day
 - Each test contains >1.9 gigabits of config latch
- Test currently is operational at 3 altitudes
 - At ~Sea level in San Jose
 - At 5,200 feet in Albuquerque
 - At 12,250 feet at White Mountain Research Center

Rosetta Test Board

NSEU Program Flow Chart

Comparison of Results at 150 nM

- Proton Cross Section
 - 3.40e-14 cm² (10 to 100 MeV)
- Neutron Cross Sections (LANSCE Hess Spectrum)
 - >1.5 MeV 1.80e-14 cm²
 - >10.0 MeV 3.43e-14 cm²
- Neutron Cross Sections (Rosetta Data)
 - >1.5 MeV 5.29e-15 cm²
 - >10.0 MeV 3.17e-14 cm²

Voltage	Altitude	Flux	Bits	Hours	>1.5MEV	>1.5MEV	>10MEV	>10MEV	Errors	>1.5Mev	>10Mev
		Mult			Flux	Fluence	Flux	Fluence		Cross Section	Cross Section
1.5	sea level	1	1958546400	3246	120	389520	20	64920	4	5.243E-15	3.146E-14
1.5	5200	1.67	1958546400	8645	200	1732458	33	288743	18	5.305E-15	3.183E-14
1.5	12250	9.2	1958546400	2084	1104	2300736	184	383456	24	5.326E-15	3.196E-14
							Average Sea Level Cross Section			5.291E-15	3.175E-14

Particle Cross Sections by Technology

Family	Technology	Proton	LANSCE	Rosetta	LANSCE	Rosetta
		10-100 MeV	>1.5 MeV	>1.5 MeV	>10 MeV	> 10 MeV
Virtex	220 nM	2.41E-14	5.50E-15	1.65E-15	1.29E-14	1.16E-14
Virtex E	180 nM	3.40E-14	7.69E-15	2.31E-15	1.45E-14	1.31E-14
Virtex II	150 nM	7.48E-14	1.80E-14	5.29E-15	3.43E-14	3.17E-14
Virtex II-Pro	130 nM	5.26E-14	1.56E-14	4.68E-15	3.44E-14	3.10E-14
Spartan 3	90 nM	3.29E-14	1.53E-14	4.59E-15	3.17E-14	2.85E-14

Proton data was taken at Crocker Nuclear Laboratories and Texas A&M Neutron data was taken at the Los Alamos Neutron Science Center Rosetta data was taken at San Jose, Albuquerque and White Mountain

Configuration Latch Cross Section versus Core Voltage

Neutron Irradiation versus Package Angle Issues

Neutron Cross Section versus Neutron Beam Incidence

What's the real Logic MTBF?

- Analysis of many typical designs shows:
 - Only 1 of 10...40 config cells is used
 - 90 to 98% are not used,
 - their SEUs cause no problem whatsoever

<u>Conservatively</u> we can multiply the MTBF by a factor ten.

Independent Confirmation

- An early HI experiment by Novus Technologies on the V300 had indicated a logic upset multiplier of between 6 and 40
- Work by BYU and LANL indicated that the logic upset multiplier can be as high as 25 - 100 for specific designs in a V1000
- By logical extension, the larger the FPGA the higher the multiplier for any given logic implementation
- BYU and LANL have developed a bit flip logic impact simulator for the V1000 that has been verified in Proton testing
- Xilinx has extensive data on PIP utilization from the many EasyPath applications that we are supporting
- Xilinx laboratories are developing software algorithms (SEUPI) to identify "critical" bits which may affect user logic

The Impact of Technology

Device	Technology	Config Bits	Neu Sect	Rosetta	MTTE	MTBF			
	nM		cm ²	cm ²	hours	years			
	Calculations	pased on ">1.5	MEV" model f	ior neutron flu [.]	x, Rosetta fact	or = 4.10			
XCV1000	220 nM	5.10E+06	5.50E-15	1.34E-15	1.22E+07	1390			
XCV1000E	180 nM	5.90E+06	7.69E-15	1.88E-15	7.53E+06	860			
XC2V1000	150 nM	2.57E+06	1.80E-14	4.39E-15	7.39E+06	843			
XC2VP4	130 nM	3.00E+06	1.56E-14	3.80E-15	7.30E+06	833			
XC3S1000	90 nM	1.70E+06	1.56E-14	3.80E-15	1.29E+07	1471			
	Calculations based on ">10.0 MEV" model for neutron flux, Rosetta factor = 1.08								
XCV1000	220 nM	5.10E+06	1.29E-14	1.19E-14	8.21E+06	937			
XCV1000E	180 nM	5.90E+06	1.45E-14	1.34E-14	6.31E+06	721			
XC2V1000	150 nM	2.57E+06	3.43E-14	3.18E-14	6.13E+06	699			
XC2VP4	130 nM	3.00E+06	3.44E-14	3.19E-14	5.23E+06	597			
XC3S1000	90 nM	1.70E+06	3.17E-14	2.94E-14	1.00E+07	1144			

The Impact of Altitude

Device	Technology	Config Bits	Neu Sect	Rosetta	MTBF yrs	MTBF yrs	MTBF yrs				
	nM		cm ²	cm ²	sea level	10,000 ft	40,000 ft				
	Calculations based on ">1.5 MEV" model for neutron flux, Rosetta factor = 4.10										
XCV1000	220 nM	5.10E+06	5.50E-15	1.34E-15	1390	139	24				
XCV1000E	180 nM	5.90E+06	7.69E-15	1.88E-15	860	86	15				
XC2V1000	150 nM	2.57E+06	1.80E-14	4.39E-15	843	84	15				
XC2VP4	130 nM	3.00E+06	1.56E-14	3.80E-15	833	83	15				
XC3S1000	90 nM	1.70E+06	1.56E-14	3.80E-15	1471	147	26				
	Calculations based on ">10.0 MEV" model for neutron flux, Rosetta factor = 1.08										
XCV1000	220 nM	5.10E+06	1.29E-14	1.19E-14	937	94	16				
XCV1000E	180 nM	5.90E+06	1.45E-14	1.34E-14	721	72	13				
XC2V1000	150 nM	2.57E+06	3.43E-14	3.18E-14	699	70	12				
XC2VP4	130 nM	3.00E+06	3.44E-14	3.19E-14	597	60	10				
XC3S1000	90 nM	1.70E+06	3.17E-14	2.94E-14	1144	114	20				

Conclusions

- Proton measurements should be used only as an qualitative indicator of NSEU rates
- LANSCE data can provide a good match to atmospheric testing <u>with</u> the correct energy model
- ROSETTA data indicates clear support for using the >10.0 MeV model for current process technology
- The sky is not falling as technology continues to shrink below 220 nM (Moore's law still lives)
- The neutron cross section can stabilize as technology shrinks (compensating a sensitivity increase by a probability decrease function)
- Designers can and are increasing the robustness of state of the art latches to NSEU effects

