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1 Abstract

In this memo we address the issue of how to apply water vapour radiometer estimates of
atmospheric phase to visibility data. We consider the impact of smoothing the radiometer
data over a period of time to reduce the noise in the w.v.r. estimate, and applying a mul-
tiplicative factor to decrease the impact of the w.v.r. estimate when the phase fluctuation
amplitude is small compared with the radiometer noise.

We find that when fast-switching is taken into account, for fully three-dimensional turbu-
lence, and r.m.s. path length fluctuations of order 75 µm, the optimal smoothing timescale
is 11 seconds. This timescale decreases to around 3 seconds as the thickness of the turbu-
lence layer becomes small compared with the baseline length. These values are found to
decrease as the r.m.s. fluctuations increase. A multiplicative factor is required to modify
the w.v.r. correction term for fluctuations less than ∼ 50 µm, where the noise in the ra-
diometer becomes comparable to fluctuations at the site.

2 Introduction

At Chajnantor, the atmosphere is expected to give rise to refractive index fluctuations due
to inhomogeneities in the water vapour and air density distribution. These are expected
to produce phase fluctuations corresponding to 70-600 µm of path, (or 1-8 degrees on a
300 m baseline at 11.2 GHz) (Butler et al. 2001, memo 365; Evans et al. 2003, memo
471), and if uncorrected can give rise to image artefacts as well as significantly reducing
the sensitivity of the interferometer. There are two main methods for correcting for the
effects of atmospheric phase – fast switching, which is sensitive to the total atmospheric
phase, but along the line of sight to the calibrator, and water vapour radiometry (w.v.r.),
which measures the fluctuations in water vapour along the line of sight to the source. The
two methods are expected to have complementary roles in the phase correction process.

In this memo we consider how best to apply the w.v.r. phase correction. The raw w.v.r.
phase estimate contains a contribution from thermal noise in the radiometer (Hills, 2004;
memo 495) as well as an error arising from uncertainty in the conversion between bright-
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ness temperature and atmospheric phase, which is dependent on the atmospheric con-
ditions (Stirling et al. , 2004; memo 496). Clearly if the atmospheric phase correction
required is very small, the thermal noise contribution can dominate the atmospheric sig-
nal, and in these circumstances simple subtraction of the w.v.r.-measured phase may add
more phase noise to the visibilities than it removes. In these cases a different strategy is re-
quired for applying the phase, for instance by applying only a fraction of the w.v.r.-derived
phase. A similar technique could also be used when there is some correlation between
the dry and wet phase terms, allowing the phase estimate to be increased or decreased
accordingly. The noise contribution from the w.v.r. can also be decreased by integrat-
ing the w.v.r. measurements over a longer time-period. On timescales up to ten seconds
(Williamson, 2004), the noise is expected to scale inversely with the square root of the
integration time. Increasing the integration time, however, also reduces the w.v.r.’s sensit-
ivity to small-scale water vapour fluctuations, and so the choice of appropriate timescale
will depend both on the statistics of the atmospheric fluctuations, and the amplitude of the
noise component.

In this memo we calculate the integration times and multiplicative factor that will give the
best estimate for the visibility given the expected levels of radiometer noise, and typical
atmospheric fluctuations. The atmospheric phase fluctuations are treated as a random
Gaussian process with a Kolmogorov power spectrum on small scales.

The layout of this report is as follows: Section 3 provides a brief context to the phase cor-
rection problem, and Section 4 outlines the mathematical formalism used to calculate the
optimum integration time and multiplicative factor. In Section 5 we calculate the expec-
ted form of the phase structure function, taking into account the size of the antenna, and
the effect of fast switching. The resulting optimum integration time-scales are presen-
ted in Section 6, using some typical numbers for the statistics of phase fluctuations at
Chajnantor. The findings are summarised in Section 7.

3 Visibility measurements

ALMA is expected to produce several visibility measurements a second, and if phase
switching is used to eliminate small offsets in the correlator outputs, these will be aver-
aged into bundles of about one second (or 16 ms times the number of antennas; Thompson,
Moran & Swenson, 2001). The w.v.r. correction is then applied to these averaged meas-
urements before the visibilities are gridded up in the u − v plane. We outline how this
might work below.

Suppose we measure a series of complex visibilities, Vi. Each visibility contains the
astronomical visibility, Vast, (i.e. the quantity we want to know), a shift in phase due to
the atmosphere θatmos

i , and a complex contribution from instrument noise, Ni. We can
write the measured visibility as:

Vi = Vast exp[iθatmos
i ] + Ni. (1)

If phase switching is used, the visibilities are averaged over a timescale η, which may be
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of order 1 second, and so the visibility data obtained is given by:

V η
j =

1

N

jN
∑

i=(j−1)N

[

Vast exp[iθatmos
i ] + Ni

]

, (2)

where N is the number of visibility measurements in the time period η. Now for short
timescales of η (up to a few seconds), the variance in θatmos

i is small enough that sin (∆θatmos
i ) '

∆θatmos
i , and cos (∆θatmos

i ) ' 1, and we can say:

V η
j ' Vast exp[iθη

j ] + N η
j , (3)

where θη atmos
j is just θatmos

i averaged over the time interval η, and similarly for N η
j .

Now for each visibility measurement, V η
j , we have a corresponding estimate for the at-

mospheric phase, φwvr
j . Our estimate for the corrected visibility, Ṽ η

j , is therefore:

Ṽ η
j = V η

j e−iφwvr

j

= Vast exp[iθη atmos
j − iφwvr

j ] + N η
j exp[−iφwvr

j ]. (4)

The visibilities are averaged further when the data is gridded into separate (u, v) cells,
and so our final estimate for the visibility at a given (u, v) cell is given by:

Ṽ (u, v) =
1

Ng

Ng
∑

j=1

Vast exp[iθη atmos
j − iφwvr

j ] +
1

Ng

Ng
∑

j=1

N η
j exp[−iφwvr

j ], (5)

where Ng is the number of visibility measurements lying in the grid-cell (u, v). The
timescale over which the visibilities can be gridded to form a single (u, v) coordinate is
set by the time taken for the earth’s rotation to move the dishes by about half the diameter
of the dish (D/2). If we consider that the longest baseline (of length b) traces out a circle
in the u − v plane as seen from the south-pole, then the time taken to move by D/2, is

t =
12 hours

π

D

2b
. (6)

For a baseline of 20 km, the maximum averaging time is 4 s, while for a baseline of 0.2 km,
the maximum averaging time is 400 s, and so for η ' 1s, Ng is likely to range between 4
and 400.

Since the noise term is uncorrelated with the atmospheric phase, the best approximation
for Vast can be obtained when Ng is maximum (since the noise decreases as the square
root of Ng), and by minimising the contribution from the atmospheric exponent i.e. min-

imising
(

θη atmos
j − φwvr

j

)2
. In this memo, we concentrate on producing the best estimate

for the atmospheric phase from the w.v.r. so that
(

θη atmos
j − φwvr

j

)2
is minimised. The

w.v.r. estimate for atmospheric phase is also affected by noise in the radiometer, and
so we can aim to reduce its contribution by averaging the w.v.r. estimate for the atmo-
spheric phase over a longer period of time. Clearly, the longer the time of integration,
the smoother the atmospheric background appears, but the lower the noise contribution.
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We can also introduce a multiplicative factor, α, which allows the correction term to be
reduced when the noise becomes large compared with the atmospheric phase fluctuations,
and which can increase the correction term when the smoothing has reduced the power
in that term. In the next section, we calculate an expression for the optimum integration
time and multiplicative factor α.

4 Calculation of integration times

In this section we calculate an expression for the time interval over which the radiometer
phase data needs to be averaged, and the corresponding optimal value for the multiplicat-
ive factor, α, to give the best estimate for the atmospheric phase.

Since the visibilities are initially averaged over a given time interval, η, we let θη be
the true atmospheric phase at time t averaged over a time interval of length η, so that
−η/2 < t < η/2. φτ is the w.v.r. estimated phase averaged over a time interval τ . nτ is
the radiometer noise, also averaged over the time interval τ .

It is worth noting that the timescale η (i.e. the visibility integration time) is set by the way
ALMA processes the data, and tends to be small (of order 1 s) and that this timescale in
the atmospheric phase is preserved even if the visibilities are then smoothed over some
other timescale. Conversely, the time scale τ , is a quantity we are free to change because
the w.v.r. phase is estimated explicitly. The aim of this work is to calculate how long τ
should be so as to minimise the noise component, while keeping the most accurate phase
correction. We can cast this as a minimisation of the quantity ετ , where:

ετ
2 = 〈(θη − αφτ − αnτ )

2〉 (7)

and the angle brackets represent an average over time, and α is a constant that we are free
to choose. We can expand this to be:

ετ
2 = 〈θ2

η〉 + α2〈φτ
2〉 + α2〈nτ

2〉 − 2α〈θηφτ 〉 (8)

= 〈θ2
η〉 + α2〈φτ

2〉 + α2 σ2
n

τ
− 2α〈θηφτ 〉, (9)

where we have assumed that the radiometer noise is uncorrelated with the phase signal,
and that the radiometer noise decreases as the square root of the integration time. The
w.v.r. phase is given by:

φτ =
1

τ

∫ τ/2

−τ/2

θ (t′) dt′, (10)

so we have terms such as:

〈φτθη〉 =
1

τη

∫ η/2

−η/2

∫ τ/2

−τ/2

〈θ (t1) θ (t2)〉dt1 dt2. (11)

Now, the autocorrelation function is assumed to be time independent, so that 〈θ (t1) θ (t2)〉
depends only on the time difference between t1 and t2: i.e. 〈θ (t1) θ (t2)〉 = ξ (t2 − t1).
We can therefore change variables, and by setting x = t2 − t1, y = t1 + t2, we get:

〈φτθη〉 =
1

2τη

∫ ∫

ξ (x) dx dy, (12)
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Figure 1: Changing coordinates of integration from t1 and t2 to x = t2 − t1, and y = t2 + t1.

where we have in effect rotated the axes of integration. The additional factor of two comes
from the Jacobian of the transformation between (x, y) and (t1, t2). Since this is a finite
integration area, we need to consider the limits carefully. Figure 1 illustrates the change
of coordinate system. While the limits are constant in the t1 − t2 coordinate space, these
limits change along x and y. The limits can be found by breaking the area into three
regions. In the first region (region I) the y limits lie between line L4 and L3. The second
(region II) has y ranging between L4 and L2, and in the third region (region III) y lies
between L1 and L2.

The equations of lines L1-4 are given by:

L1 : t2 = −τ/2; L2 : t1 = η/2; L3 : t2 = τ/2; L4 : t1 = −η/2, (13)

and using x = t2 − t1, and y = t1 + t2, we get:

L1 : y = −x − τ ; L2 : y = η + x; L3 : y = τ − x; L4 : y = x − η. (14)

So the limits for y for regions I, II, and III are

I :x − η < y < τ − x; II :x − η < y < η + x; III : − x − τ < y < η + x, (15)

and our corresponding limits for x are:

I :
τ−η

2
< x <

τ +η

2
; II : − τ−η

2
< x <

τ−η

2
; III : − τ +η

2
< x < −τ−η

2
. (16)
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Integrating w.r.t. y, and using the limits defined in equations 15 and 16 we can rewrite
equation 12 as:

〈φτθη〉 =
1

2τη

∫ (τ+η)/2

(τ−η)/2

(η + τ − 2x) ξ (x) dx +
2η

2τη

∫ (τ−η)/2

−(τ−η)/2

ξ (x) dx +

1

2τη

∫

−(τ−η)/2

−(τ+η)/2

(η + τ + 2x) ξ (x) dx. (17)

Making use of ξ(−x) = ξ(x) to cast the third term’s limits in the same form as the first
term, this can be reduced to:

〈φτθη〉 =
2

2τη

∫ (τ+η)/2

(τ−η)/2

(η + τ − 2x) ξ (x) dx +
4η

2τη

∫ (τ−η)/2

0

ξ (x) dx. (18)

So finally we are in a position to assemble an equation for the mean square error in phase
correction using w.v.r. for a given correlation function. In order to make the final form
(slightly) less messy, we can define two functions:

I1 (a, b) =

∫ (a−b)/2

0

ξ (x) dx, (19)

and

I2 (a, b) =

∫ (a+b)/2

(a−b)/2

(a + b − 2x) ξ (x) dx, (20)

then substituting for the terms in equation 7, the mean square error in the w.v.r. phase
correction is given by:

ετ
2 =

1

η2
I2 (η, η) +

α2

τ 2
I2 (τ, τ) − 2α

1

τη
I2 (τ, η) − 2α

2η

τη
I1 (τ, η) + α2 σ2

n

τ
. (21)

To proceed from here, we need to choose an appropriate form for ξ, which we shall do in
the next section.

5 Shape of structure function

The correlation function required for the calculations is for the phase variations as ‘seen’
by the antenna, and once fast switching has been taken into account. This differs from
the ‘true’ correlation function both on small scales, where the antenna beam smooths out
fluctuations on scales smaller than the size of the dish, and on large scales where the effect
of fast switching is to remove phase variation on scales larger than the fast switching time
interval. In this section we first consider the form of the atmospheric correlation function,
and then describe how the antenna beam and fast-switching alter the correlation function.
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5.1 Atmospheric fluctuations

In atmospheric flow that is fully turbulent, the structure function (S (x), where S (x) ≡
〈[φ (r) − φ (r − x)]2〉) can be described by a power law between scales ranging from a
few cm up to a length scale set by the depth of the turbulent layer. On scales greater than
the depth of the turbulent layer (l), the structure function turns over, and phases separated
than more than l are expected to be uncorrelated. The depth of the turbulent layer is likely
to depend on the time of day, being of order 100 m at night, and as high as 1 km during
the daytime.

We assume here that we can model the shape of the structure function as a break between
two power laws, giving a structure function that increases on small scales, and is constant
above a certain length-scale, b, i.e. :

S (∆r) ≡ 2σ2
φ − 2〈φ (r) φ (r − ∆r)〉 = 2σ2

φ[1 − ξ (∆r)] (22)

= 2σ2
φ

∆rγ

bγ + ∆rγ
, (23)

where b is the length-scale over which the fluctuations become decorrelated. The correl-
ation function is then:

ξ (∆r) = σ2
φ − 1

2
S (∆r)

= σ2
φ

bγ

bγ + ∆rγ
. (24)

We can convert from spatial to temporal fluctuations by assuming that the fluctuations
cross the antenna with constant velocity, V , and so x = V t, i.e. :

ξ (∆t) = σ2
φ

(b/V )γ

(b/V )γ + ∆tγ
. (25)

While this correlation function gives the intrinsic atmospheric fluctuations, two modifica-
tions are required to take account of the antenna beam shape, and the use of fast-switching
to a reference source.

5.2 Antenna beam shape

The antenna beam acts to smooth out small scale path length variations, on a scale of
order the size of the antenna. We can treat this as a convolution of the original phases
with a Gaussian of width corresponding to the time taken to cross half of the dish (σd ∼
6m/V ms−1), i.e.

φ′ = φ ? exp[−t2/2σ2
d]. (26)

In Fourier space this becomes:

φ̃′

ω = σdφ̃ω × exp[−ω2σ2
d/2], (27)

and so the power spectrum is given by:

P ′ (ω) = σ2
dP (ω) exp[−ω2σ2

d]. (28)
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Figure 2: Left: The effect of antenna smoothing on the phase correlation function. Solid line
shows the atmospheric correlation function before smoothing, and the dashed line shows the cor-
relation function once it has been smoothed by the antenna beam. Right: The effect of fast-
switching on the correlation function. Solid line shows the phase correlation function before fast-
switching is applied, and the dashed line shows the correlation function after fast-switching has
been applied, and after normalising to 1 at zero separation. In both cases, γ = 2/3 and b/V = 50 s
were used to generate the initial correlation function from equation 25.

The corresponding correlation function is then

ξ′ (t) =
1√
2π

∫

P ′ (ω) exp[iωt]dω

∝ ξ (t) ? exp[−t2/4σ2
d]. (29)

The main effect of this smoothing is to flatten the correlation function close to ∆t = 0,
and this is shown in figure 2.

5.3 Fast switching

Fast switching provides an additional estimate for the atmospheric phase by pointing to
a point source calibrator about once every 50 seconds. An estimate for the astronomical
phase before fast switching is applied is given by:

φsource est = φsource + φatmosphere − φwvr − φwvr noise, (30)

and in Fourier space this is just:

φ̃source est
ω = φ̃source

ω + φ̃atmosphere
ω − φ̃wvr

ω − φ̃wvr noise
ω . (31)

The phase difference obtained when the antenna points at the calibrator is given by:

φcal = φatmosphere − φwvr − φwvr noise. (32)
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Now since this data is taken only every N seconds, only frequencies lower than π/N can
be represented, and so in Fourier space, the calibration phase difference is given by:

φ̃cal
ω =

[

φ̃atmosphere
ω − φ̃wvr

ω − φ̃wvr noise
ω

]

Hω (−π/N, π/N) , (33)

where H is a top hat function:

Hω (π/N, π/N) =

{

0 for ω > π/N and ω < −π/N

1 for −π/N < ω < π/N
. (34)

When the calibration phase is subtracted from the source estimate phase, in Fourier space
we get:

φ̃source est
ω − φ̃cal

ω = φ̃source
ω +
[

φ̃atmosphere
ω − φ̃wvr

ω − φ̃wvr noise
ω

]{

1 −Hω (−π/N, π/N)

}

,(35)

and so the effect of the fast switching (in the way it has been applied here) is to remove
frequencies lower than ω = π/N from both the atmospheric phases and the w.v.r. data.
This corresponds to a convolution of the atmospheric correlation function and radiometer
output with the Fourier transform of [1−H]2 (= 1−H). This acts to remove the largest-
scale correlations, and effectively decreases the value of b in equation 23, so that the
structure function rises more steeply, and turns over on a scale set by the fast switching
time-scale, (if this is shorter than the coherence time-scale of the turbulent layer). This
effect is shown in figure 2. The removal of large-scale power also acts to decrease the
r.m.s. amplitude of the fluctuations and the amplitude of the radiometer noise, and so we
take this into account in the analysis.

5.4 Typical phase statistics at Chajnantor

In this section we consider some realistic values for calculating the correlation function.
Taking into account antenna beam smoothing and fast switching, the correlation function
can be written as:

ξ (t) =

[

σ2
φ

(b/V )γ

(b/V )γ + tγ

]

?

[

exp[−t2V 2/4σ2
d]

]

? FT
[

1 −H (−π/N, π/N)

]

, (36)

where FT denotes the inverse Fourier transform, and H is defined in equation 34.

Carilli, Lay & Sutton (1998; memo 210) suggested that typical exponents for the atmo-
spheric structure function at Chajnantor were likely to be γ = 5/3 on baselines shorter
than the thickness of the flucuating layer, and γ = 2/3 for baselines greater than the
thickness of the fluctuating layer. In addition, interferometric measurements of the r.m.s.
phase fluctuations from Chajnantor (Butler et al. , 2001, memo 365; Evans et al. , 2003,
memo 471) suggest that on 300 m baselines at 11.2 GHz the 10th percentile fluctuations
are 1 degree at night, and 3 degrees during the day, while the 50th percentile fluctuations
are 2 degrees at night, and 8 degrees during the day. These give r.m.s. path lengths of
σφ = 75, 150, 220, 590µm (for 1,2,3,8 degrees respectively).
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The structure function turns over on scales of order the depth of the atmospheric boundary
layer, and for these calculations we choose a value of b = 500 m. V is set to 10 m s−1,
and is chosen to be a characteristic wind speed at a height of 250 m.

The antenna beam size has a width of order half the size of the dish, and so we take
σd = 0.5 s. Finally we assume that fast switching will take place every 50 s, so that
N = 50. These values are summarised in table 1.

Once we have an estimate for the correlation function after beam smoothing and fast
switching, we can use equation 21 to calculate how the error in w.v.r. phase correction
depends on different smoothing times for the radiometer data (τ ), and different weights
for the radiometer data, α.

6 Results

Figure 3 shows how the r.m.s. residual path length, ετ , depends on τ and α for different
values of γ and σφ. The dependence of τ and α on the r.m.s. path fluctuations, σφ, for
different values of γ are shown in figure 4. For fluctuations of order 1 degree at 11.2
GHz (75 µm), an integration timescale of τ = 11 s is preferred for three-dimensional
Kolmogorov turbulence fluctuations (γ = 5/3), and τ = 3 s for more two-dimensional
turbulence (γ = 2/3). The optimum value of α is close to 1 for σφ > 100 µm for all
values of γ, but for σφ < 100 µm, the behaviour depends on γ, with the best fit value for
α increasing for γ = 5/3, and decreasing for γ = 0. These dependences are discussed in
greater detail below.

Dependence on σφ Figure 4 shows that the optimal smoothing time varies inversely with
the r.m.s. phase, σφ, with the smoothing time required decreasing as σφ increases, and ap-
proaching a constant value for large σφ. This behaviour is set by the ratio of the radiometer
noise to w.v.r. signal, since longer integration times reduce the noise, but increase the de-
correlation between the atmospheric phases and the w.v.r. correction. As σφ decreases, the
w.v.r. signal decreases relative to the noise, and a longer integration timescale is favoured
to reduce the impact of the noise.

The variation of the best fit α with σφ is more complicated, and displays different beha-
viour for different values of γ. For σφ < 20 µm and γ = {2/3, 1, 5/3}, α > 1 is favoured.
In this regime the optimal integration time is very long, and this reduces the variance both
of the noise term and of the w.v.r. signal relative to the measured atmospheric variance.
An increased value of α therefore acts to compensate for the loss in variance of the w.v.r.
signal.

For γ = {2/3, 1}, and in the range 20 < σφ < 100 µm, this behaviour switches quite
steeply to a value of α < 1. This is linked to the fall in integration time, which decreases
the level of decorrelation between the w.v.r. time-averaged signal and the ‘true’ atmo-
spheric phase, and increases the significance of the noise. The correction is therefore
weighted down to reduce the impact of the noise from the radiometer.

For σφ > 100 µm, the behaviour converges for all values of γ, and α → 1. In this
regime, the w.v.r. signal dominates over the radiometer noise, and so using the actual
w.v.r. measurement becomes favoured.
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Dependence on γ Figure 4 also shows that the integration time is a strong function of the
slope of the correlation function, γ. The difference in behaviour with γ is linked to the
difference in the rate at which variance is lost when the fluctuations are smoothed over
a given timescale. For low-γ distributions, the power is more evenly spread on different
scales, whereas for high-γ distributions, the power tends to be concentrated in the larger-
scale modes. Smoothing on a given timescale therefore tends to decrease the variance of
the low-γ distributions more than for the high-γ distributions. While longer integration
times bring the noise levels down, the longer the integration time, the larger the scales
over which power is lost, and this has its biggest impact on the low-γ distributions. The
tendency is therefore for low-γ distributions to favour smaller timescales of integration,
and higher-γ distributions to favour longer timescales of integration.

σd / s σn/µm V/ ms−1 η /s b /m
0.5 10

√
2 10 1 500

γ
√

2σφ/µm τ best / s α best ε/µm
1.67 25. 25.0 1.20 2.4
1.67 75. 10.6 1.03 4.3
1.67 150. 6.4 1.01 5.9
1.67 220. 5.1 1.01 6.7
1.67 590. 2.8 1.00 9.0
1.00 25. 10.8 0.97 4.6
1.00 75. 4.0 0.98 7.6
1.00 150. 2.7 1.00 9.3
1.00 220. 2.2 1.00 10.2
1.00 590. 1.5 1.00 12.1
0.67 25. 7.0 0.88 5.7
0.67 75. 2.8 0.97 9.0
0.67 150. 2.1 1.00 10.6
0.67 220. 1.8 1.00 11.4
0.67 590. 1.3 1.00 13.1

Table 1: Table showing the parameters used to generate the plots in figure 3. V is the horizontal
velocity used to convert between spatial structure functions and a timeseries value, and is set to
10 ms−1.

√
2σφ is the total r.m.s. path length fluctuation, and corresponds to the 10 th and 50th

percentile conditions during the day and during the night taken using an interferometer operating
at 11.2 GHz on a 300 m baseline. For each value of γ and σφ, the best fit smoothing time, τ , and
multiplicative factor, α, along with the expected minimum error in the correction, ε are shown.
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Figure 3: Contours of expected error in path once the w.v.r. correction has been taken into
account, and as it varies with α and integration time, τ (see equations 7 and 10). Contours are
at 10µm intervals, with the innermost contour at 1µm above the minimum point. (The minimum
errors along with the best fit values for τ and α are recorded in table 1.) Each column has the same
value of γ, and left to right, γ takes values 5/3, 1, and 2/3. Each row has the same r.m.s. phase,
σφ, measured in microns. Top row corresponds to an r.m.s. phase of 25 µm, and the second, third,
fourth and fifth rows to 75, 150, 220, and 590 µm respectively. The other parameters are kept fixed
and are listed in table 1.
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Figure 4: Left: The optimum integration time plotted against the r.m.s. phase fluctuations, σ φ,
for the best fit value of α, and different values of γ. Centre: the best fit value for α as it changes
with σφ. For each value of σφ, the best fit τ is used. Right: the minimum error in correction, ε,
as a function of σφ when the best fit values for τ and α are used. In each case, solid line is for
γ = 5/3, , dotted γ = 1, dashed γ = 2/3, and dot-dashed, γ = 0. Other parameters used are as
listed in table 1.

7 Conclusions

In this memo we have looked at how w.v.r. measurements can be applied to correct for
atmospheric phase fluctuations once fast switching has been applied. In particular we have
calculated the optimum timescale over which the measurements should be averaged, and
explored the possibility of allowing a multiplicative factor to reduce the impact of a noisy
phase estimate on visibility data retrieved in good atmospheric conditions. Smoothing of
the w.v.r. data causes a loss in resolution on smaller scales, but at the same time decreases
the noise contribution.

We find that both the amplitude and slope of the spectrum of fluctuations influence the
choice of timescale, and for typical fluctuations with r.m.s. 50 µm or more, and three-
dimensional Kolmogorov turbulence, integration times of between 3 and 10 seconds are
favoured. As the thickness of the turbulence layer becomes small compared with the size
of the baseline, the turbulence becomes more two dimensional, and an integration time
of between 1 and 3 seconds is preferred. The multiplicative factor in the conditions we
have explored stays close to 1 until the atmospheric fluctuations drop below ∼ 100µm,
at which point a higher value is favoured for three-dimensional turbulence, and a lower
value is preferred for two-dimensional turbulence.

While we have not directly addressed the impact of dry fluctuations in this memo, in
circumstances where these are uncorrelated with the wet fluctuations, the above analysis
would be expected to hold. When there is a certain amount of correlation between the dry
and wet fluctuations, the factor α could be used to increase or decrease the w.v.r. estimate
accordingly.

Finally, an issue raised by this report is how this approach may be applied in practice.
For instance, should we decide what the w.v.r. averaging time should be as the data is
collected? One possible approach would be to collect both the w.v.r. and interferometer
data in a buffer of simliar size to the final averaging time (30-60 s). The data in this buffer
could be used to measure the w.v.r. fluctuations, and infer the phase fluctuations above
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each antenna. In cases where one might use the same averaging time for each antenna (for
example in compact configurations, or when the atmosphere is very stable), the averaging
time could be calculated from the r.m.s. w.v.r. fluctuation level, or from the average
temporal structure function of each w.v.r.. This would allow the averaging times to change
every 30-60 seconds. Clearly, it would be important to store the averaging time alongside
the data to facilitate any additional corrections that might need to be made. While there
may sometimes be a case for applying different w.v.r. averaging times at each antenna,
for instance when ALMA is in a large configuration, application in real time would be
complicated, and should perhaps be avoided unless it can give a large improvement to the
phase correction.
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